Status (till last week)

(very initial trial of) dE/dx from 2*MDC configuration

Next

in short (immediate) term

- Set the Gas mixture :
 Helium base (He:iC4H10 = 90:10)
- Try to see dE/dx from the bethe-bloch formula
 - -- with x-axis of unit in $\beta\gamma$

in middle (short) term

- Make more realistic detector? Updating data analysis?
- Digitization ? Garfield ? ...

Since current way is just looking a possible chain with rough treatment at each procedure

Energy loss (-dE/dx)

http://pdg.lbl.gov/2020/reviews/rpp2020-rev-passage-particles-matter.pdf

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2\frac{Z}{A}\frac{1}{\beta^2}\left[\frac{1}{2}\ln\frac{2m_ec^2\beta^2\gamma^2W_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right].$$

For, $_{18}$ Ar (gas), one of typical gas in chamber, $\rho(\text{density}) = 1.662\text{e}{-3}~\text{g/cm}^3$

-dE/dx ~2 MeV · cm²/g

→ loss per unit length 1.3 KeV/cm

$$W_{\rm max} = \frac{2m_ec^2\,\beta^2\gamma^2}{1+2\gamma m_e/M+(m_e/M)^2} \sim 2m_ec^2\,\beta^2\gamma^2 \eqno({\rm M:\,incident\,\,particle\,\,mass}\,)$$

 $K = 4\pi N_A r_e^2 m_e c^2$

 $\bar{0}.307075 \text{ MeV mol}^{-1} \text{ cm}^2$

Backup

Average energy to produce one ion pair

$$W\langle N_{\rm I}\rangle = L\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle$$

N_I: average number of ionization electrons created along a trajectory of Length L

dE/dx: average total energy loss per unit path length

Table 1.3 Energy W spent, on the average, for the creation of one ionization electron in various gases and gas mixtures [CHR 71]; W_{α} and W_{β} are from measurements using α or β sources, respectively. The lowest ionization potential is also indicated

Gas	$W_{\alpha}(eV)$	$W_{\beta}(eV)$	I(eV)	Gas mixture ^a	$W_{\alpha}(eV)$
H ₂	36.4	36.3	15.43	Ar (96.5%) + C ₂ H ₆ (3.5%)	24.4
He	46.0	42.3	24.58	Ar $(99.6\%) + C_2H_2(0.4\%)$	20.4
Ne	36.6	36.4	21.56	Ar (97%) + CH ₄ (3%)	26.0
Ar	26.4	26.3	15.76	$Ar(98\%) + C_3H_8(2\%)$	23.5
Kr	24.0	24.05	14.00	Ar $(99.9\%) + C_6H_6 (0.1\%)$	22.4
Xe	21.7	21.9	12.13	Ar $(98.8\%) + C_3H_6 (1.2\%)$	23.8
CO_2	34.3	32.8	13.81	$Kr (99.5\%) + C_4H_8-2 (0.5\%)$	22.5
CH_4	29.1	27.1	12.99	$Kr (93.2\%) + C_2H_2 (6.8\%)$	23.2
C ₂ H ₆	26.6	24.4	11.65	$Kr (99\%) + C_3H_6 (1\%)$	22.8
C_2H_2	27.5	25.8	11.40	, , , ,	
Air	35.0	33.8	12.15		
H_2O	30.5	29.9	12.60		

a The quoted concentration is the one that gave the smallest W.

how we could know δI/I?

The resolution is also depending on gas type and pressure.

$$\frac{\delta I_{\rm mp}}{I_{\rm mp}} = 0.115 \left(\frac{1 \, \rm m \, bar}{L p}\right)^{0.32} \left(\frac{Z_{\rm Ar} I}{Z I_{\rm Ar}}\right)^{0.32} \left(\frac{100}{n}\right)^{0.14} \quad (FWHM), \quad (10.12)$$

following remarks are put together ...

It should be emphasized that this formula has not yet been tested experimentally in a systematic comparison between different gases. The value of the constant is equal to the value of $0.96(\xi/I)^{0.32}$ for 1 cm of argon.

10.9 Single-gap resolution measured for various gases and pressures [LEH 82b] as a function of the product of pressure p and sample length x