Status on SDT simulation

Ryuta
05/19/2020

Status

- Check the geometry described in the CDR
- Check the geometry file in the LDT \& how to change it
- Check (read the manual) and run the simulation with the CEPC baseline detector configuration
- Compare the output result

Detector Geometry

- Geometry file stored under LDT2.0 is "cepc-all.bgeom"
cepc-all.bgeom: vtx part

Detector Geometry

4.2.2.1 BASELINE DESIGN

- SIT-

The silicon tracker of the baseline design consists of four components: the Silicon Inner Tracker (SIT), the Silicon External Tracker (SET), the Forward Tracking Detector (FTD), and the Endcap Tracking Detector (ETD). The overall layout is shown in Figure 4.1 and

FTD	Disk 1	39	151.9		220	from CDR vOl.2
	Disk 2	49.6	151.9	371.3		
	Disk 3	70.1	298.9	644.9	0.65%	
	Disk 4	79.3	309	846	0.65%	
	ETD	Disk 5	92.7	309	1057.5	0.65%
Disk	419.3	1822.7	2420	0.65%		

Table 4.5: Main parameters of the CEPC silicon tracker. Silicon pixel sensors are planned for the two inner disks of the FTD whereas silicon microstrip sensors are envisioned for the rest. The column labelled $\pm z$ shows the length of the SIT and SET layers, and the z position of the FTD and ETD disks.

58	58 Number of layers	6						
59	59 Description (optional)	\|TPC outer wall	-------------External Tracker-					
60	60 Names of the layers (opt.)	XTPCW 2 ,	SET1,	XSET1,	XSET2,	SET2,	SET3	
61	61 Radii [mm]	1808,	1810.9,	1811.1,	1812.4,	1813.4,	1847.4	
62	62 Upper limit in z [mm]	2350,	2300,	2300,	2300,	2300,	2350	
63	63 Lower limit in z [mm]	-2350,	-2300,	-2300,	-2300,	-2300,	-2350	
64	64 Efficiency RPhi	0 ,	0.99 ,	0 ,	0 ,	0 ,	0	
65	65 Efficiency 2nd coord. (eg. z) :	0 ,	0 ,	0 ,	0 ,	0.99 ,	0	
66	66 Stereo angle alpha [Rad]	7*(pi/180),	7* (pi/180),	7*(pi/180),	7*($\mathrm{pl} / 180$),	7*(pi/180),	90* ($\mathrm{pi} / 180$)	
67	67 Thickness [rad. Iengths]	0.00518 ,	0.00213 ,	0.00468 ,	0.00468 ,	0.00213 ,	0	
68	68 error distribution	0						
69	690 normal-sigma(RPhi) [1e-6m] :	7,	7,	7 ,	7,	7 ,	7	
70	70 sigma(z) [1e-6m]:	7,	7 ,	7 ,	7 ,	7 ,	7	
71	711 uniform-d (RPhi) [1e-6m]							
72	72 d(z) [1e-6m] :							
73	73							

Detector Geometry

information is scattered but (as I remembered) we can confirm the numbers in the CDR

4.2.1.1 CEPC TIME PROJECTION CHAMBER

The CEPC TPC consists of a field cage, which is made with advanced composite mate rials, and two readout end-plates that are self-contained including the gas amplification, readout electronics, supply voltage, and cooling. The TPC has a cylindrical drift volum with an inner radius of 0.3 m an outer radius of 1.8 m , and a full length of 4.7 m . The central cathode plane is held at a potential of 50 kV , and the two anodes at the two end-plate re at ground potential. The cylindrical walls of the volume form the field cage, which解 nsures a highly homogeneous electrical field of $300 \mathrm{~V} / \mathrm{cm}$ between the electrodes. Th drift volume is filled with $\mathrm{Ar} / \mathrm{CF}_{4} / \mathrm{iC}_{4} \mathrm{H}_{10}$ in the ratio of $95 \% / 3 \% / 2 \%$. Ionization electron released by charged particle tracks drift along the electric field to the anodes where they are amplified in an electron avalanche and read out using a Micro-Pattern Gas Detecto (MPGD)

Figure 4.7: Sketch of the TPC detector. The TPC is a cylindrical gas detector with an axial electric field formed between the end-plates (yellow) and a central cathode plane/membrane (light blue). The cylindrical walls of the volume form the electric field cage (dark blue). Gas ionization electrons due to charged particles drift to the end-plates where they are collected by readout modules (yellow)

Detector Geometry

- Magnetic field-

- default parameter in "cepc-all.bgeom"

```
74 Magnetic field and beam spot
75
76 Solenoid magnetic field [T] : 3.5
7 7 \text { Range in x [mm] : -0 0}
7 8 \text { Range in y [mm] : -0 0}
79 Range in z [mm] : -0 0
```

74 Magnetic field and beam spot
75
76 Solenoid magnetic field [T]
77 Range in x [mm]
: 3.0
78 Range in y [mm] : -0 0
79 Range in z [mm] : -0 0

Transverse impact parameter resolution

4.1.3.1 PERFORMANCE OF THE BASELINE CONFIGURATIONS

The impact parameter resolution, following from the single-point resolutions provided in Table 4.1, is displayed in Figure 4.3 as a function of the particle momentum, showing that the ambitious impact parameter resolution is achievable.

from CDR vol. 2

Figure 4.3: Transverse impact-parameter resolutions for single muon events as a function of momentum for two polar angles 20° and 85°. The results are shown for both fast simulation and full simulation method.

Comparison

$-\quad$ 20-20 deg
$-\bigcirc \quad 85-85 \mathrm{deg}$

\#\# At a glance, the simulation result coincide with the one in the CDR, but would need to compare the values. (since they are slightly different)

Transverse momentum resolution

from CDR vol. 2

Figure 4.22: Transverse momentum resolution for single muon tracks as a function of the track momentum estimated for the CEPC baseline design with full simulation (dots) and fast simulation (black lines) compared to the analytical results obtained with Eqs. 4.2 and 4.3 (red line).

Comparison

Next step

- Change the geometry
-- removing the TPC

40 Time Projection Chamber (TPC)
41
sigma^2=sigma0^2+sigma1^2*sin(beta) ${ }^{\wedge} 2+C d i f f \wedge 2 * 6 m m / h$ $* \sin$ (theta) $*$ Ldrift [m]
42 Number of layers : 0
43 Radii [mm] : 0
44 Upper limit in z [mm] : 0
45 Lower limit in z [mm] : 0
46 Efficiency RPhi : 0
47 Efficiency z : 0
48 Thickness [rad. lengths] : 0
49 sigma0 (RPhi) [1e-6m] : 0
50 sigma1 (RPhi) [1e-6m] : 0
51 Cdiff(RPhi) [1e-6m/sqrt(m)]: 0
52 sigma0 (z) [1e-6m] : 0
53 sigma1 (z) [1e-6m] : 0
$54 \operatorname{Cdiff}(z) \quad[1 e-6 m / s q r t(m)]: 0$

