Status on SDT simulation

Ryuta

Update

 \bullet Have investigated the topic around the estimation of dE/dx and its resolution

Energy loss (-dE/dx)

http://pdg.lbl.gov/2020/reviews/rpp2020rev-passage-particles-matter.pdf

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{\rm max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right].$$

For, $_{18} Ar$ (gas), one of typical gas in chamber, $\rho(\text{density}) = 1.662 e\text{--}3 \text{ g/cm}^3$

$$-dE/dx \sim 2 \text{ MeV} \cdot \text{cm}^2/\text{g}$$

$$\Rightarrow \text{ loss per unit length 1.3 KeV/cm}$$

$$W_{\text{max}} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma m_e/M + (m_e/M)^2} \sim 2m_e c^2 \beta^2 \gamma^2$$
(M: incident particle mass)
$$K = 4\pi N_A r_e^2 m_e c^2 \qquad 0.307\,075 \text{ MeV mol}^{-1} \text{ cm}^2$$

Ref: variable table

Table 34.1: Summary of variables used in this section. The kinematic variables β and γ have their usual relativistic meanings.

Symb	. Definition	Value or (usual) units
$m_e c^2$	electron mass $\times c^2$	0.510 998 9461(31) MeV
r_{e}	classical electron radius	
	$e^2/4\pi\epsilon_0 m_e c^2$	2.817 940 3227(19) fm
α	fine structure constant	
	$e^2/4\pi\epsilon_0\hbar c$	1/137.035999139(31)
N_A	Avogadro's number	6.022140857(74)
	0	$\times 10^{23} \text{ mol}^{-1}$
ρ	density	$\rm g~cm^{-3}$
\boldsymbol{x}	mass per unit area	$\rm g \ cm^{-2}$
M	incident particle mass	MeV/c^2
E	incident part. energy γMc^2	MeV
T	kinetic energy, $(\gamma - 1)Mc^2$	MeV
W	energy transfer to an electron	MeV
	in a single collision	
$W_{\rm max}$	Maximum possible energy transfer	MeV
	to an electron in a single collision	
\boldsymbol{k}	bremsstrahlung photon energy	MeV
z	charge number of incident particle	
Z	atomic number of absorber	
Α	atomic mass of absorber	$g \text{ mol}^{-1}$
K	$4\pi N_A r_e^2 m_e c^2$	$0.307075 \text{ MeV mol}^{-1} \text{ cm}^2$
	(Coefficient for dE/dx)	
Ι	mean excitation energy	eV (Nota bene!)
$\delta(\beta\gamma)$ density effect correction to ionization energy loss		
$\hbar \omega_p$	plasma energy	$\sqrt{\rho \langle Z/A \rangle} \times 28.816 \text{ eV}$
	$\sqrt{4\pi N_e r_e^3} m_e c^2/\alpha$	$\rightarrow \rho \text{ in g cm}^{-3}$
N_e	electron density	(units of r_e) ⁻³
w_j	weight fraction of the j th element is	n a compound or mixt.
n_j	\propto number of <i>j</i> th kind of atoms in a	compound or mixture
X_0	radiation length	$\rm g \ cm^{-2}$
E_c	critical energy for electrons	MeV
$E_{\mu c}$	critical energy for muons	GeV
E_s	scale energy $\sqrt{4\pi/\alpha} m_e c^2$	21.2052 MeV
R_M	Molière radius	$\rm g \ cm^{-2}$

4

Resolution of dE/dx

http://pdg.lbl.gov/2020/reviews/rpp20 20-rev-particle-detectors-accel.pdf

Straight forward way would be

-- dE/dx (per unit cell) is proportional to the number of electron/hole pairs typical number is ~ 100 (per cm)

-- signal multiplication (= gain) factor, $10^4 \sim 10^5$, the total number of carriers, within the drift time is obtained.

-- need to consider the electronics response: the filter (RC filter), amplifier, and electronics noise (important)

Figure 35.15: Energy deposit versus momentum measured in the ALICE TPC.

Combining those steps, we can estimate the resolution

The dependence of the achievable energy resolution on the number of measurements N, on the thickness of the sampling layers t, and on the gas pressure P can be estimated using an empirical formula [135]:

$$\sigma_{dE/dx} = 0.41 \ N^{-0.43} (t P)^{-0.32}. \tag{35.17}$$

Typical values at nominal pressure are $\sigma_{dE/dx} = 4.5$ to 7.5%, with t = 0.4 to 1.5 cm and N = 40 up to more than 300. Due to the high gas pressure of 8.5 bar, the resolution achieved with the PEP-4/9 TPC was an unprecedented 3% [136].

[136] H. Aihara et al., IEEE Trans. NS30, 63 (1983).

- -- It is an old reference of the resolution for a TPC
- -- Not sure(confirmed) yet, what condition should be met to apply this formula

For instance, $s \sim 0.41 * 222(layers)^{-0.5} * (1cm*1atm)^{-0.32} = 2.8\%$

5~7 ? % is somehow we can see in the references