Update on TPC R&D at IHEP

Huirong Qi and Zhi Deng Zhiyang Yuan, Yiming Cai, Yue Chang, Hongyu Zhang, Ye Wu, Jian Zhang, Wei Liu, Yulan Li, Hui Gong IHEP and Tsinghua 15, June, 2020

Status of TPC detector Status of ASIC R&D Status of the collaboration

 ✓ All of update progress will be reported: "Development of IBF suppression TPC integrated with low power ASIC and laser beams", ICHEP2020

Motivation		International	Leading
TPC limitations for Z	MOST1 2016.6-2021.6	conaboration	IHEP, Tsinghua
 Ions back flow in chimber Calibration and alignmens^{FC} 	NSFC 2016.1-2020.12	LCTPC	IHEP, Tsinghua
 Low power consumption for A chip 	ASIC		

IP

Compare with ALICE TPC and CEPC TPC

Preliminary results

Status of the prototype

Status of TPC prototype

TPC prototype features:

- Anti-vibration Pneumatic optical Platform
 - 1.2m×0.8m
- 266 nm UV laser beam split installation
 - 42 UV laser beams
 - 0.75mm diameter of laser beam
 - 9 layer along the drift length
- TPC detector
 - TPC chamber
 - High voltage crate
 - 1280 channels readouts
- Q-smart laser device
 - Repeat frequency: 1Hz-20Hz
 - Initial power: 20mJ/pulse
 - Duration of the pulse: 5ns

Photos of the prototype - 5 -

Anti-vibration Pneumatic optical Platform

Technical Parameters:

- Self balancing and centering with air spring as well as pendulum bar
- Provide excellent vibration isolation performance in both vertical and horizontal direction
- Auto inflation system
- High density honey comb core breadboard
- Surface Roughness: 0.5-0.6µm
- Flatness/Unevenness: 20µm
- Inherent Frequency: 1.5-2Hz
- Amplitude: <1µm

TPC prototype and FEE R&D

- Main parameters
 - Drift length: ~500mm
 - Readout active area: 200mm×200mm
 - Integrated the laser calibration with 266nm
 - Gamplifier (Assembled)
 - CASAGEM chip
 - 16Chs/chip
 - Shape time: 20ns
 - DAQ (Assembled)
 - FPGA+ADC
 - 4 module/mother board
 - 64 Chs/module
 - Sample: 40MHz
 - 1280chs

Layout of 16-ch TPC Readout ASIC

- 7 -

Diagram of the TPC prototype with the laser calibration system

Re-assembled TPC prototype in last three months

Optimization of gas leak, O ring seal, **20kV** HV filedcage and UV beam devices.

Event display interface @V1.7

- Event display software
 - Integrated with DAQ software packages
 - Event and some information display interface developed
 - Energy spectrum

UV, Laser

Noise of adjacent pads

- Noise of the adjacent pads
 - Click and three figures display
 - HV of the detector and field cage: ON
 - Waveform sampling results: 25ns
 - Laser power: ON
 - Baseline uniformity to zero

Noise of the adjacent pads

Signals of adjacent pads

Signals of the adjacent pads

Position resolution

- Laser size: Φ0.75mm
- Gaussian laser profile
- Pad size: 0.95mm × 5.9mm
- Three adjacent pads : >92%

Number of the adjacent pads

 \mathbf{N}

1

Resolution

- Laser size: Φ0.75mm
- Gaussian laser profile of UV laser beam
- Gain study in the different operation gas

Status of ASIC R&D

ASIC in 65nm CMOS

Architecture and Specification

The waveform sampling front end:

- a preamplifier and a shaper as the analog front-end (AFE)
- a waveform sampling ADC
- a dedicated digital signal processing (DSP) and data compression unit for each channel

The Key Specifications of the AFE and the ADC

AFE	ENC	500 e @ 10pF input cap.	Shaper	CR-RC
	Gain	~10 mV/fC	Shaping time	~160 ns
	Crosstalk	<1%		
ADC	Sampling rate	≥20 MSPS	Resolution	10 bit
Process		TSM C 65nm LP	Power consumption	≤5 mW per channel

ASIC in 65nm CMOS

- Current Progress
 - First MPW tape out in 2017, including three prototype chips
 - 5-channels analog front end (preamplifier + CR-RC shaper)
 - Single channel SAR-ADC
 - Single channel full function ASIC (analog front and SAR-ADC)
 - 5-channels analog front end, SAR-ADC and full function
 - Preliminary testing in Oct.,2019 and re-test in April, 2020
 - Second MPW tape out in Nov. 2019
 - Second MPW will be tested in Tsinghua University
 - Second MPW will used for TPC prototype's testing

First MPW ASIC tests

Results of power consumption and lineartity

Power Consumption

- \blacksquare Adjustable by an external resistor. At normal bias current of 25 μ A, the power consumption of AFE part is 2.50 mW/ch
- The power consumption of ADC part is 5.41 mW/ch at 50MS/s. ADC core circuits consume 1/4 of the total ADC power (1.35 mW/ch)

The maximum INL is 0.55% for the dynamic range up to 120 fC (gain = 5.08 LSB/fC)

■ Non-Linearity

Amplitude distribution of the direct ASIC outputs with 50 fC injected charge: ENC = 1572 e @ 4.3 pF.

Amplitude distribution of the trapezoidal filter outputs implemented in Matlab: ENC = 883 e @ rising time = 1 μ s and flat top time = 0.2 μ s

Status of the collaboration

Overview of two readout options

Pad TPC and Pixel TPC

track of high

E

pillars

GridPixes:

energetic particle

Pad TPC for collider

- Active area: 2×10m²
- One option for endplate readout - GEM or Micromegas
 - $-1 \times 6 \text{ mm}^2 \text{ pads}$
 - 106 Pads
 - -84 modules
 - Module size: 200×170mm²
 - Readout: Super ALTRO
 - CO₂ cooling

Pixel TPC for collider

cathode

readout pads

But to readout the TPC with

 \rightarrow 50k-60k GridPixes

 $\rightarrow 10^9$ pixel pads

 \rightarrow 100-120 chips/module

For Collider @cost:

Lower occupancy

Benefits of **Pixel** readout:

- \rightarrow This gives < 12 single pixels hit/s.
- \rightarrow With a read out speed of 0.1 msec (that
- matches a 10 kHz Z rate)
- \rightarrow the occupancy is less than 0.0012
- Improved dE/dx
 - \rightarrow primary e- counting
 - Smaller pads/pixels could result in better resolution!
 - □ Gain <2000
 - Low IBF*Gain<2</p>
 - \Box CO₂ cooling

New consideration for lowest IBF at low gain

CEPC Pixel TPC with double meshes

- Question: can one reduce the Ion Back Flow of a GridPix detector?
- IHEP and Nikehf
 - Too design a GridPix detector using a double grid
 - The idea is that by creating two field regions, one with a medium field and one with a high field (Standard Grid Pix) one could reduce the ion backflow in two stages.
 - The high field avalanche region has a measured IBF of 1.3%
 - The aim is to reduce the IBF by another factor 100
 - The second Grid replaces the Gating device and is always operational

Concept of the double meshes

CEPC Pixel TPC with double meshes

Comparison of the different concepts

Pixel TPC with double meshes	Triple or double GEMs	Resistive Micromegas	GEM+ Micromegas	Double meshes Micromegas
IHEP, Nikehf	KEK, DESY	Saclay	IHEP	USTC
Pad size: 55um-150um square	Pad size: 1mm×6mm	Pad size: 1mm×6mm	Pad size: 1mm×6mm	Pad size: 1mm×6mm (If resistive layer)
Advantage for TPC: Low gain: 2000 IBF×Gain: -1	Advantage for TPC: Gain: 5000-6000 IBF×Gain: <10	Advantage for TPC: Gain: 5000-6000 IBF×Gain: <10	Advantage for TPC: Gain:5000- 6000 IBF×Gain: <5	Advantage for TPC: High gain: 10^4 Gain: 5000-6000 IBF×Gain: 1-2
Electrons cluster size for FEE: About Ø200um	Electrons cluster size for FEE: About Ø5mm	Electrons cluster size for FEE: About Ø8mm	Electrons cluster size for FEE: About Ø6mm	Electrons cluster size for FEE: About Ø8mm
Integrated FEE in readout board Detector Gain: 2000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000

Concept

Simulation of backflow trajectories second Grid

Field ratio 40

Field ratio 240

Field ratio = E_2/E_1

Ion backflow for a double grid

 Calculations for the IBF of the two meshes in case one has a total FR240 – normal GridPix operation. The lower Grid(Pix) was at FR16 too.

Ion backflow	Hole 30 µm	Hole 25 µm	Hole 20 µm
Top grid	2.2%	1.2%	0.7%
GridPix	5.5%	2.8%	1.7%
Total (IBF)	12×10 ⁻⁴	3×10 ⁻⁴	1×10 ⁻⁴
Electron transparency	100%	99.4%	91.7%

- In order to reach IBF×Gain≈1 (Gain 10³) below one has to choose a slightly
- Smaller hole size of 25 or 20 microns. (460LPI- 510LPI)
- The new meshes delivered to Nikehf and tests will be collaborated.

Summary

- Some update progress and experimental studise of TPC prototype R&D in last three months.
- Some update progress of the TPC ASIC chips R&D and the results of the power consumption and noise.
- Some update collaboration of the new concept R&D with Nikehf.

Thanks!