

Status of the TaichuPix chip for the highrate CEPC Vertex Detector

Wei Wei On behalf of the CEPC MOST2 Vertex detector design team

2020-06-15

CEPC Day 20200615

Outline

- Status of the TaichuPix1 test
- Status of the TaichuPix2 submission (2nd MPW)
- Recent design status and plan

CEPC Vertex Detector Concept

3-layers of double-sided pixel sensors

Ref: Pixel Vertex Detector Prototype MOST 2018-2023 (MOST2), Joao Costa, 2019.11

Ladder1-{ Layer1., 16., 62.5., 2.8., Layer2., 18., 62.5., 6., Ladder2-{ Layer3., 37., 125., 4., Layer4., 39., 125., 4., Ladder3-{ Layer5., 58., 125., 4., Layer6., 60., 125., 4.,		ته	R(mm).	z (mm).	σ(μm)-
Layer2. 18. 62.5. 6. Ladder2-{ Layer3. 37. 125. 4. Layer4. 39. 125. 4. Ladder3-{ Layer5. 58. 125. 4. Layer6. 60. 125. 4.	Ladder1-	Layer1.	16.	62.5.	2.8.
Ladder2-{ Layer3. 37. 125. 4. Layer4. 39. 125. 4. Ladder3-{ Layer5. 58. 125. 4. Layer6. 60. 125. 4.		Layer2.	18.	62.5e	6.
Ladder2Layer4 39 125 4 Ladder3Layer5 58 125 4 Layer6 60 125 4	Ladder2	Layer3.	37.	125-	4.
Ladder3 - { Layer5. 58. 125. 4. Layer6. 60. 125. 4.		Layer4.	39 #	125 .	4 .
Layer6, 60, 125, 4,	Ladder3-	Layer5-	<mark>58</mark> .	125-	4.
		Layer6.	60e	125 -	4.
CF+PMI foam					

A ladder module conceptual design

Main specs of the full size chip for high rate vertex detector

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: $25\mu m \times 25\mu m$

For Vertex	Specs	For High rate Vertex	Specs	For Ladder Prototype	Specs
Pixel pitch	<25µm	Hit rate	120MHz/chip	Pixel array	512row×1024col
TID	>1Mrad	Date rate	3.84Gbps triggerless ~110Mbps trigger	Power Density	< 200mW/cm ² (air cooling)
		Dead time	<500ns for 98% efficiency	Chip size	~1.4cm×2.56cm

From the CDR of CEPC

New proposed architecture by TaichuPix1

From Tianya Wu in User Manual

- Similar to the ATLAS ITK readout architecture: "columndrain" readout
 - Priority based data driven readout
 - Modification: time stamp is added at EOC whenever a new fast-or busy signal is received
 - Dead time: 2 clk for each pixel (50ns @40MHz clk), negligible compared to the average hit rate

2-level FIFO architecture

- L1 FIFO: In column level, to de-randomize the injecting charge
- L2 FIFO: Chip level, to match the in/out data rate between the core and interface
- Trigger readout
 - Make the data rate in a reasonable range
 - Data coincidence by time stamp, only matched event will be readout 5

Chip Status of TaichuPix1

Chip size: $5mm \times 5mm$ Pixel size: $25\mu m \times 25\mu m$

- First MPW tapeout was submitted in June,2019
 - Thanks IFAE for their tunnel for submission to TJ
- Chip received in Nov. 2019
 - With 60 chips, 40 chips delivered to China
- One block area of 5mm×5mm was fully occupied
 - A full functional pixel array (small scale)
 - > 85% of the block area
 - A 64×192 Pixel array + Periphery + PLL + Serializer
 - > Bias generation included
 - > I/O arranged in one edge, as the final chip
 - other independent test blocks (less critical)
 - > LDO + PLL

Test setup for chip evaluation

- Test setup based on KC705 Xilinx FPGA Eva board
- General data stream
 - Downstream from PC to chip: TCPIP@MATLAB → SPI package@ FPGA → TaichuPix Periphery
 - Upstream from chip to PC: TaichuPix
 Serializer → FIFO@FPGA →
 TCPIP@MATLAB
- Test Firmware developed in IHEP (China side) by Jun HU and Wei WEI
 - Released version delivered to different collaborators, and functional worked

Test Status of TaichuPix1

- Initiated in November, in parallel with Tcpx2 design
- Due to the limited time and some detected bugs, most tests were functional test before Tcpx2's submission
- Blocks test
 - IO ring: bugs found and located
 - > Weak short between VDD & VSS detected due to the DNW soft conn
 - > Test can still proceed with forcely power supply
 - -6V power supply was found vulnerable to ESD
 - PLL: Fully functional proved
 - Lock frequency & lock range proved
 - Typical freq@40MHz, 2.24GHz for Triggerless
 - Serializer PRBS test functional proved
 - LVDS@160MHz proved, Triggerless not testable
 - Periphery: (Almost) Fully functional proved
 - SPI configuration proved
 - Communication with Serializer proved
 - LDO:
 - Function good but with large output DC shift

-/SPI_CLX_OBUP

- /SP1_NOS1_COUP - /SP1_CS3_COUP - /SP1_NISC_IDUP

/SPE CLX OBJE

/SPI_CSB_CENF /SPI_NISO_IBUF

Test Status of TaichuPix1

- Blocks test
 - Bias generation: bugs found and located
 - Output reference oscillates occasionally lack of phase margin
 - Reference DC value with large shift still not fully understood
 - > Bypassed in the full test
 - Pixel Analog Fully functional proved
 - > Tested by a probing pixel with buffer
 - **>** Response to the calibration pulse, and light
 - Pulse shape close to the saturation condition
 - Generally responses following the S-curve behavior
 - Bias needs careful tune due to the DAC shift
 - Pixel Digital problem found and almost located
 - The ALPIDE-like columns (with the highest priority) cannot be reset, and will block other columns
 - Problem was because of the power supply issues of the pixel layout (needs further simulation)

Timing performance

- Measured delay of leading edge → Time difference from 50% of leading edge of OUT_A to 50% of APULSE
- Simulated delay of leading edge
 → Time difference from 50% of leading edge of OUTD (connected to in-pixel digital) to 50% of PIX_IN

18 May. 2020, Design meeting of MOST2 by Zhang Ying.

Timing performance

VPWELL= 0 V, pulsing with VHIGH = 1.8 V, varying VLOW

*IBIAS= 280 nA case measured with chip#4, the others measured with chip #5

18 May. 2020, Design meeting of MOST2 by Zhang Ying.

Summary of the Preliminary performance test of Pixel Analog

- Pixel Analog Functionally work
- Time walk performance was thoroughly tested
 - Behavior similar to the simulation, however twice slower than simulation at the same biasing (power)
 - Maybe because of the incorrect bias generation of DAC, still needs to further understand
 - > Not a serious problem though
- Noise performance was roughly tested by S-curve method (in an analog way)
 - 5e- of ENC was tested, by using the design value of injection capacitor, not energy calibrated
 - However, very rough result, the voltage tuning precision was very very poor

Status of TaichuPix2

- Submitted on Feb 18, 5*5mm
 - Will be shipped from TJ on Jun 22nd.
- All blocks fully integrated, as the final chip
 - New features
 - A 64*192 pixel array with the same dimension as Tcpx1
 - 32 + 32 double column modified FE-I3 readout, 32 dblcol modified ALPIDE readout
 - 6 variations of pixel analog, each for 16 columns
 - Newly integrated blocks: Two LDOs for power supplies
 - 8b10b encoder added for Triggerless output and balanced datastream
 - X-chip buses added for multiple chip interconnections

Status of TaichuPix2

- Major bugs (were tried to be) fixed
 - New IO rings were used, without DNW soft connect issues
 - DAC stability improved with higher phase margin
- Pixel readout optimized
 - To make larger headroom for the timing
 - Data latching @ 1clk -> 1.5clk
 - Address encoder pull-up added to avoid high-Z state
- Pixel analog new attempts
 - Smaller pixel area
 - Possible to be 24um*25um
 - One branch with enclosed gate for better TID
- X-chip interconnections attempts
 - SPI buses, PLL clock reference, reset signal, are possible to be propagated by chip-chip wire bonding
 - Save some routing space for the flex cable design

Summary and Recent Schedule

- Test of the Tcpx1 chip will continue, and to locate all the bugs
 - Test firmware were delivered to different sites, and parallel tests had been initiated
 - First crosscheck test agreed with those in IHEP
 - Performance test for the functional blocks
 - Pixel analog almost complete
 - Try to see if TID test is possible with Tcpx1
- The test setup design will be initiated for the Tcpx2 chip, based on previous setup
 - Tcpx2 is expected to be received in about June~July
 - Test board design for Tcpx2 is on-going and will be submitted
- Thinking about the following Tcpx3 MPW...
 - It is better to collect all the test results and bugs of Tcpx1 &2 before Tcpx3 submission
 - Expected to tapeout in the Spring of 2021

Thank you!

Challenges and R&D activities on pixel sensors

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: 25μm×25μm
- Hit rate: 120MHz/chip @W

- Two major constraints for the CMOS sensor
 - Pixel size: < 25μm* 25μm (σ~5μm)
 > aiming for 16μm*16μm (σ~3μm)
 - Readout speed: bunch crossing @ 40MHz
- None of the existing CMOS sensors can fully satisfy the requirement of high-rate CEPC Vertex Detector
- TID is also a constraint, 1~2.5Mrad/year is achievable

	ALPIDE	ATLAS-MAPS (MONOPIX / MALTA)	MIMOSA
Pixel size	~	Х	 ✓
Readout Speed	Х	 	Х
TID	X (?)	✓	~

Team organization

• Slides from Y. Zhang, Satellite meeting of MOST2 in Oxford, 2019.4

- Design team:
 - IHEP, SDU, NWPU, IFAE & CCNU
 - Biweekly/weekly video design meeting on chip design (convened by IHEP)

Institutes	Tasks	Designers
IHEP	Full chip modeling & simulation Pixel Analog, TCAD simulation High speed interface: PLL + Serializer	Wei Wei, Ying Zhang Xiaoting Li, Weiguo Lu, Mei Zhao
CCNU/IFAE	Pixel Digital	Tianya Wu, Raimon Casanova
NWPU	Periphery Logic, LDO	Xiaomin Wei, Jia Wang
SDU	Bias generation	Liang Zhang

- Chip characterization
 - Test system development: SDU & + other interested parties
 - Electrical test: all designers supposed to be involved in the related module + other interested parties
 - Irradiation test: X-ray irradiator + beam line