Update on CMOS/MOST1 and SOI pixel R&D

Yunpeng Lu and Qun Ouyang

IHEP On behalf of the study group CEPC Day / June 15, 2020

<u>Outline</u>:

- Introduction
- Update on JadePix3 and CPV3
- Perspective for next 5 years

* contents will be reported: "Development of high resolution low power silicon pixel sensors for the CEPC vertex detector", ICHEP2020, ID #394

中國科學院為能物用研究和 Institute of High Energy Physic. Chinese Academy of Sciences

Introduction

	Process	International	Objectives of the project	Anticipated	Leading
		collaborators		schedule	institutions
MOST1	CMOS	Strasburg	Small pixel size design with in-pixel	2016.6-2021.5	IHEP, CCNU
		IPHC	digitization and low power frontend		
NSFC	SOI	KEK/SOIPIX	Verification of SOI process with small pixel	2016.1-2019.12	IHEP
		collaboration	size and low noise design		

Towards Baseline Requirements: CMOS and SOI R&D in Synergy

Developed CMOS Pixel Sensor funded by MOST1

Prototype	Pixel size (μm²)	Collection diode bias (V)	In-pixel circuit	R/O architecture	Main goals	Status
JadePix2	22 × 22	< 10 V (ac- coupled)	amp., discriminator, binary output	Rolling shutter	Small pixel, Power < 100 mW/cm ²	Electrical functionality verified
MIC4	25 × 25	reverse bias	Low power front- end, address encoder	Data-driven, Asynchronous	Small pixel, fast readout	Electrical functionality verified
JadePix3	$\begin{array}{c} 16 \times 26 \\ 16 \times 23.11 \end{array}$	reverse bias	Low power front- end, binary output	Rolling shutter with end of col. priority encoder	Small pixel, low power	Production finished

All prototypes in TowerJazz 180 nm CIS process

JadePix2 (IHEP) $3 \times 3.3 \text{ mm}^2$ To be published in NIMA

MIC4 (CCNU & IHEP) $3.2 \times 3.7 \text{ mm}^2$ NIMA 924(2019) 82-86

JadePix3 (IHEP, CCNU, Dalian Minzu Unv., SDU) 10.4 imes 6.1 mm²

Developed SOI Pixel Sensor funded by NSFC

Prototypes in LAPIS 200nm Double-SOI process

LAPIS 200nm Pinned Depleted Diode process

- 16μm *16μm with in-pixel discrimination
- Double-SOI process for shielding and radiation enhancement

CPV1 (IHEP) $3 \times 3 \text{ mm}^2$

- Thinned down to 75µm thick
- Temporal noise ~6e⁻
 - Threshold dispersion (FPN) ~114e⁻
 - Single point resolution ~2.3µm measurement under infrared laser beam

CPV2 (IHEP) 3 × 3 mm² NIMA 924(2019) 409-416 CPV3 (IHEP) $6 imes 6~
m mm^2$

- Dedicated bias scheme to minimize capacitance
- Optimized for low FPN 12e⁻
- Pixel matrix divided as 45 regions, to verify design options

JadePix3: fully functional prototype with small pixel design

ow address decoder

Specification:

- Spatial resolution
 - − ~ 3um
 - Initial pixel size $16um \times 20um$
 - FPN < 20e⁻
- Power consumption
 - $< 100 \text{mW}/\text{cm}^2$
 - Measureable

Rolling shutter readout

- 512 row * 192 col
- One row selected at a time
- 102 us to finish 512 rows
- Every 48 columns fed into the Priority Encoder at the end of columns.

Small pixel: Low power FE + Rolling shutter Readout

JadePix3: chip status

- Submitted in Oct. 2019
- Process finished in May 23rd 2020
- Diode, minimum size

 $S_{diode}=4\mu m^2$, $S_{footprint}=36\mu m^2$, $C_{diode}\sim 4-5 fF$

- Front-end, 2 versions
 - FE_V0, FE_V1 (20nA, 60nA)
- Pixel digital, 3 versions
 - DGT_V0, DGT_V1, DGT_V2
- Pixel area
 - $16 \times 26 \,\mu m^2$
 - $-16 \times 23.11 \,\mu m^2$

Design team IHEP: Yunpeng Lu, Ying Zhang, Yang Zhou, Zhigang Wu, Qun Ouyang CCNU: Ping Yang, Weiping Ren, Le Xiao, Di Guo, Chenxing Meng, Anyang Xu, Xiangming Sun Dalian Minzu Unv.: Zhan Shi SDU: Liang Zhang

> P Yang, CEPC workshop, Nov.2019 YP Lu, HSTD12, 14-18 Dec.2019, Hiroshima, Japan

> > Estimated: ~55mW/cm²:

- $> 9 \text{mW/cm}^2 \text{ (pixel array)}$
- 30mW/cm² (zero suppression & data buffer)
- $> 6.25 \text{mW/cm}^2$ (Serializer)
- $> 5 \text{mW/cm}^2 \text{ (PLL)}$
- $> 4mW/cm^2$ (LVDS)

Details of design:

Full size sensor of the Silicon Vertex Detector, Wei WEI https://indico.ihep.ac.cn/event/11068/

Sector	Diode	Front-end	Pixel digital	Pixel layout
0	$2+2 \ \mu m$	FE_V0	DGT_V0	16×26 μm ²
1	$2+2 \ \mu m$	FE_V0	DGT_V1	16× 26 μm ²
2	$2+2 \ \mu m$	FE_V0	DGT_V2	16× 23.11 μm ²
3	$2+2\ \mu m$	FE_V1	DGT_V0	16×26 μm ²

Plan of JadePix3 Test and JadePix4 design

- May Aug. 2020
 - Sub-board to mount the chip into readout system
 - Wire bonding and components loading
 - Readout system debugging
- Sep. 2020 Feb. 2021
 - Characterization of individual parts on chip
 - Optimization of operation
 - ⁵⁵Fe 5.9 keV X-ray calibration
- Sometime in 2021
 - Beam test
 - JadePix4 design submission

Yunpeng Lu, Wenhao Dong (USTC/IHEP)

IHEP/CCNU/.....

CPV3: an novel design with SOI-PDD process

- Proposed by Shoji Kawahito (Shizuoka U.)
 - Pinned Si surface layer \rightarrow reduction of surface leakage by 2 orders
 - Depleted charge collection electrode \rightarrow reduction of diode capacitance
 - Lateral electric field → improved charge collection efficiency

Pixel design

- Sensing node AC-coupled to the amplifier to allow Vbias up to +10V
 - Minimize the capacitance at pixel pitch 16 um * 20 um
- Common Source (CS) amplifier, 1st stage
- Cascode amplifier, 2nd stage

V_{bpw}

Statistical simulation, FPN = 12 e- * CPV2: 114 e-

Status of CPV3

- Design team: Zhigang Wu, Yunpeng Lu
- Mask area: 6mm×6mm
 - Optimized for low FPN
 - Pixel matrix divided as 45 regions, to verify design options
 - Rolling shutter readout
- Summitted Feb, 2019
 - Delivered in Oct. 2019
 - Testing is ongoing

YP Lu, CEPC workshop, Nov.2019, Beijing ZG Wu, HSTD12, 14-18 Dec.2019, Hiroshima, Japan

Readout System

- FPGA board + Chip adaptor
 - Commercially available KC705
 - Gigabit Ethernet
 - DAQ code developed with Qt/C++
- Minor change to adapt to different chips

FPGA Board

Chip Adaptor

DAQ GUI

11

I-V test of sensor

⁵⁵Fe X-ray Calibration

- Vdiode=+4V , Vbpw=0V , Vback=-60V
- Charge collected in a 3*3 cluster
- Wider peak spread of 5*5 cluster due to electrical noise
- Equivalent Cd = 12fF

13

Reduction of Cd

- Vback=-60V , Vbpw=0V , increase Vdiode
 - Proof of PDD bias concept
- Expected to be 4fF@4.4V
 - Parasitic capacitance ?
 - To be confirmed by RC extraction (simulation)

More test to do

- To assemble more chips and adaptor cards
 - Compare different chips
- Optimize the operation of pixel circuit
 - Compare different structures
- Noise and threshold measurement
- Laser test or beam test, depending on
 - the outcome of full characterization
 - and possible scheme together with JadePix3

early of next year

Reminder

- Efficient tagging of heavy quarks (b/c) and τ leptons
 - \longrightarrow impact parameter resolution

$$\sigma_{x\phi} = 5 \oplus \frac{10}{p(GeV) \sin^{3/2} \theta} (\mu m)$$
MOST1?

• Detector system requirements:
$$-\sigma_{sp} \text{ near the interaction point: } <3 \mu m$$

$$- 16 \mu m \text{ pixel pitch}$$

$$- \text{ material budget: } \le 0.15\% X_0/layer$$

$$- \text{ first layer located at a radius: } \sim 1.6 \text{ cm}$$

$$- \text{ pixel occupancy: } \le 1\%$$
MOST2?

Target: fine pitch, low power, fast pixel sensor + light structure

Report of the Review of the Circular Electron Positron Collider Conceptual Design Report

Vertex Detector

Findings: there is active R&D and groups are making good progress, building on large effort by the international community. Compared to other efforts toward precise and transparent vertex detectors, CEPC (with its 100% duty cycle) should place stronger emphasis on power management. Advanced processes like 65 nm CMOS or 3D-integrated devices should be pursued actively and can have a big impact on the vertex detector performance.

R42: CEPC should develop an installation scheme for all detectors, where the Vertex Detector can be installed last and access to replace the vertex detector is possible.

R43: CEPC should keep a close eye on the power consumption an active cooling system impact of the cooling on the material budget needs to be understood, especially if air cooling is insufficient.

R44: Collaboration between the Vertex and MDI group is good, and should be further strengthened.

Vertex system revisited at the post-CDR stage

 Table 1. Design parameters of the CEPC vertex system.

	R(mm)	Z (mm)	$\sigma(\mu m)$	material budget
Layer 1	16	62.5	2.8	0.15%/X ₀
Layer 2	18	62.5	6	0.15%/X0
Layer 3	37	125.0	4	0.15%/X ₀
Layer 4	39	125.0	4	0.15%/X ₀
Layer 5	58	125.0	4	0.15%/X ₀
Layer 6	60	125.0	4	0.15%/X ₀

- Optimization for system requirements: which could be loose, or already too loose? radiation level, dedicated Z-pole vertex?
- New concept of layout?
- New process helpful? time & resources needed
 - 110nm \rightarrow LFoundry CiS explored by ARCADIA project, INFN
 - 65nm \rightarrow TJ CiS explored by CERN
 - 3D \rightarrow SOI-3D accessible via SOIPIX, but a lot still need to be verified
 - Ultra-light, self-supported pixel layer?

SOI based 3D integration

- The lower tier can be **either SOI or CMOS** pixel sensor
- 3D integration can be greatly simplified by using SOI as the upper tier
 - Etching of through via
 - Removal of handle wafer

Demonstrated SOFIST 3D chip for ILC

Miho Yamada, 3D Integrated Pixel Sensor with Silicon-on-Insulator Technology for the International Linear Collider Experiment, IEEE 3DIC, Sendai, October 8th, 2019

Hit Map (50 kEvents)

	SOFIST1	SOFIST2	SOFIST3	SOFIST4 (3D)
	Beam test at FNAL in Jan. 2017 Analog signal	Beam test at FNAL in Feb. 2018 Analog signal or Timestamp	Beam test at FNAL in Feb. 2019 Analog signal and Timestamp	3D integration by T-Micro
Chip Size (mm ²)	2.9 × 2.9	4.45 × 4.45	6×6	4.45 × 4.45
Pixel Size (µm²)	20 × 20	25 × 25	30 × 30	20 × 20
Pixel Array	50 × 50 (Analog Signal)	64 × 64 (Time Stamp) 16 × 64 (Analog Signal)	128 × 128 (Analog signal and Time stamp)	104 × 104 (Analog signal and Time stam)
Functions (Pixel)	Pre. Amplifier (CSA) Analog signal memory (2 hits)	Pre. Amplifier (CSA) Comparator (Chopper inverter) Shift register (DFF x 2) Analog signal memory (2 hits) or Time stamp memory (2 hits)	Pre. Amplifier (CSA) Comparator (Chopper inverter) Shift register (DFF × 3) Analog signal memory (3 hits) Time stamp memory (3 hits)	Pre. Amplifier (CSA) Comparator (Chopper inverter Shift register (DFF × 3) Analog signal memory (3 hits) Time stamp memory (3 hits)
Functions (On Chip)	Column ADC (8 bit)	Column ADC (8 bit) Zero-suppression logic	Column ADC (8 bit)	Column ADC (8 bit)
Wafer	FZ n -type (Single SOI)	Cz p -type (Double SOI)	FZ p-type (Double SOI)	FZ p -type (Double SOI)
Wafer Resistivity (kQ+cm)	2≤	1≤	3 - 10	3 - 10
	Delivered (Dec. 2015)	Delivered (lan. 2017)	Delivered (May. 2018)	a second a second free second as a

SUPERT

20

Development of SOI-3D chip for CEPC

- Faster and low power
 - Readout time ~ 1us, hit registered at the fast falling edge
 - Power consumption ~ 50mW/cm²
 - Shrink the pixel size by SOI-3D
- Continuous readout mode (AERD)
 - Compatible with trigger mode

Output Waveform of Discriminator

CPV4-3D design

Input

Yunpeng Lu, Yang Zhou, Wenhao Dong (USTC/IHEP)

- Pixel design iteration
 - Minimum threshold 85 e-
 - ENC ~ 1.3 e⁻ (pre-layout)
 - Compatible with SOI-PDD
- 90 work days allocated
 - Upper tier: digital
 - Lower tier: analog
- Exploring TID hardening
- Submission plan ~Oct. 2020

pixel layout (analog): 17 $\mu\mathrm{m} imes$ 21 $\mu\mathrm{m}$

ALICE ITS3 with stitching CMOS technology

Beam pipe Inner/Outer Radius (mm)	16.0/16.5			
IB Layer Parameters	Layer 0	Layer 1	Layer 2	
Radial position (mm)	18.0	24.0	30.0	
Length (sensitive area) (mm)		300		
Pseudo-rapidity coverage	±2.5	±2.3	±2.0	
Active area (cm ²)	610	816	1016	
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280 x 94	
Number of sensors per layer	2			
Pixel size (μm²)	O (10 x 10)			

- New beam pipe:
 - "old" radius/thickness: 18.2/0.8 mm
 - new radius/thickness: 16.0/0.5 mm
- Extremely low material budget:
 - Beam pipe thickness: 500 μm (0.14% X0)
 - Sensor thickness: 20-40 μm (0.02-0.04% X0)
- Material homogeneously distributed:
 - essentially zero systematic error from material distribution

Similar layout with CEPC layer 1-3

An ultra light structure vertex layout

Summary

- CMOS and SOI development in synergy
 - Following the same roadmap
 - Using the same readout system
- JadePix3 and CPV3 tests in parallel
- CPV4-3D design is ongoing, similar design scheme for JadePix4
- Stitching CMOS technology will be explored

Backup

JadePix3: Diode & Front-end design

- Design goals: small pixel size and low power consumption Sensing diode: negatively biased for high Q/C
 - Electrode size 4 μ m², with a small footprint 36 μ m²
- Frontend: tradeoff between layout area and FPN
 - Reduction on the layout area, ~200 μm²
 - Improvement on the FPN = 3.1e⁻ (simulation)
 - A low power version (20nA), equivalent to 9 mW/cm²

JadePix3: Rolling shutter readout of matrix

address decod

NO

- In-pixel circuit
 - Low power binary front-end
 - Optimized DFF
- Rolling shutter readout
 - 512 row * 192 col.
 - One row selected at a time
 - 102 us to finish 512 rows
 - Every 48 columns fed into the Priority Enc at the end of columns.
- Minimum pixel size 16× 23.11 μm²
 - 4 variants to investigate possible optimiza

Sector	Diode	Front-end	Pixel digital	Pixel layout
0	$2+2 \ \mu m$	FE_V0	DGT_V0	$16 \times 26 \ \mu m^2$
1	$2+2 \ \mu m$	FE_V0	DGT_V1	$16 imes 26 \ \mu m^2$
2	$2 + 2 \ \mu m$	FE_V0	DGT_V2	$16 \times 23.11 \ \mu m^2$
3	$2+2 \ \mu m$	FE_V1	DGT_V0	$16 \times 26 \ \mu m^2$

JadePix3: Periphery data processing

- Zero suppression at the end of column
 - Each 48 columns divided into 16 blocks
 - 'Fired' blocks identified sequentially by
 - a 4-bit priority encoder
 - 12.5 ns * 16 blocks = 200 ns/row
- Only hit information fed into FIFO

Row #	Block #	hits in block
9-bit	4-bit	3-bit

- FIFO R/W clk: 80 MHz
- FIFO depth: 48
- Data stream steered by a Finite State Machine
- Data after 8b/10b: 800 Mbit/s
- Estimated Power consumption 76mW
 - 15mW (Zero suppression), 25mW (Serializer), 20mW (PLL), 16mW (LVDS)

CPV4-3D: Readout mode

- Continuous readout
 - strobe == 1
 - Timing by falling edge ~1us

- Triggered readout
 - Strobe as gate signal
 - Timing by trigger ~5us

CPV4-3D: Verified on a Mini-Matrix design

31

Matrix identifying R&D priorities for different experiment areas

Technology Driver	Pixel Size	Pixel Size	Radiation	Timing	Radiation	Collection	Cost per	Low
	(Granularity)	(Resolution)	Hardness	Resolution	Length	Thinness	Area	Power
Target Application								
HL-LHC Vertex								
HL-LHC & LHCb								
Tracker upgrades								
LHCb Phase 3								
Vertex								
Future hh Vertex								
Future hh								
Tracker								
Future hh HG								
ECAL								
Proton EDM								
Future e-h								
Nuclear Physics incl.								
HI & FAIR								
e ⁺ e ⁻ Vertex								
(ILC/circular)		-						
e ⁺ e ⁻ Vertex (CLIC)								
e+e- Tracker								
(ILC/circular)								
e⁺e⁻ Tracker								
(CLIC)								
e ⁺ e ⁻ HG ECAL								
cLVF rare muon								
decays (Mu3e)								
Hadron Therapy								

Joost Vossebeld, Silicon Detectors R&D future needs and opportunities for European collaboration, 16/04/2018

Updated Parameters of Collider Ring since CDR

	Higgs		Z	(2T)
	CDR	Updated	CDR	Updated
Beam energy (GeV)	120		45.5	
Synchrotron radiation loss/turn (GeV)	1.73	1.68	0.036	-
Piwinski angle	2.58	3.78	23.8	33
Number of particles/bunch N _e (10 ¹⁰)	15.0	17	8.0	15
Bunch number (bunch spacing)	242 (0.68µs)	218 (0.68µs)	12000	15000
Beam current (mA)	17.4	17.8	461.0	1081.4
Synchrotron radiation power /beam (MW)	30		16.5	38.6
Cell number/cavity	2		2	
$β$ function at IP $β_x$ * / $β_y$ * (m)	0.36/0.0015	0.33/0.001	0.2/0.001	
Emittance ε _x /ε _y (nm)	1.21/0.0031	0.89/0.0018	0.18/0.0016	-
Beam size at IP σ _x /σ _y (μm)	20.9/0.068	17.1/0.042	6.0/0.04	
Bunch length σ_z (mm)	3.26	3.93	8.5	11.8
Lifetime (hour)	0.67	0.22	2.1	1.8
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	5.2	32.1	101.6
Luminosity increase fo	actor:	8		32
Lonninosity increase id	х х		×	3.2

Highlights and future perspective of the CEPC detector

November 2019 2019 International Workshop on the High Energy Circular Electron Positron Collider

Sarah Eno

University of Maryland

Important to do. While very stringent specs can inspire detector builders, when it comes time to build, too stringent specs can:

- can push one to immature technologies
- explode costs

Too loose specs can lead to missed physics opportunities Nice session on Monday exploring this topic

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker 2	$\Delta(1/p_T) = \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$	Too tight?
$H \to b \bar{b}/c \bar{c}/gg$	${\rm BR}(H \to b \bar{b} / c \bar{c} / g g)$	Vertex 5	$\sigma_{r\phi} = \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	Not enough?
$H \to q\bar{q}, WW^*, ZZ^*$	${\rm BR}(H\to q\bar{q},WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV	Too tight?
$H\to\gamma\gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$	Not enough?

Br(H->bb, cc) measurement

- Br (H -> cc) is extremely sensitive to the vertex design
- Br (H -> bb) is not really sensitive to the vertex design

Zhigang Wu, Optimization on silicon detectors at CEPC, CEPC workshop Nov.2019

Same layout as in CDR

Q Ouyang, CEPC CDR review, Sept.2018

Impact of magnetic field

 $B=3T \rightarrow 2T$

