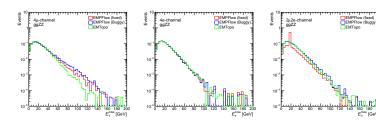
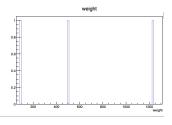
Weekly report

Abdualazem Fadol

 $July\ 20,\ 2020$

EMPFlow checks




We produced samples for testing you can find them here /eos/user/a/amoohamm/HZZMetSamples/Testing/ntuples/EMPFlow
There's $qqZZ$, $ggZZ$ and $t\bar{t}$ samples.
The $qqZZ$ that we have is 364250, still need to add 364251 and 364252
Also, we have test samples for some selected signal samples.

The EMPFlow's bug is solved, at least that's what the expert says, but it doesn't seem so. See backup slides. And they still asking us to do some debugging.

EMPFlow checks

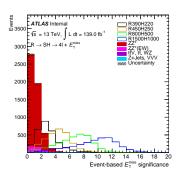
 $\hfill \square$ We found a hug weight which causing the peaks around 25 GeV

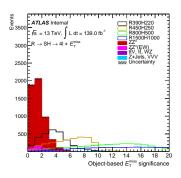
New mini-trees production

- \square New samples produced to check the object-based $E_{\rm T}^{
 m miss}$ significance vs event-based $E_{
 m T}^{
 m miss}$ significance.
- ☐ The samples're here /eos/user/o/omtintsi/public/HZZMetSamples/
- $\hfill \square$ However, we found difference on the cutflow between old and new.

	$(m_R, m_H) = (390, 220)$	qqZZ	qqZZ(EW)	99ZZ	ttV	Z + jets	tt.	VVV	WZ	8/1/6
4ℓ	64.17±0.24	2523.28±4.48		350.23±0.72	35.56±0.45	12.95 ± 10.85		4.73 ± 0.37	19.18±0.12	
B-veto	62.00±0.24	2446.15±4.44	37.12±0.14	341.16±0.71	7.86±0.21	12.95 ± 10.85	1.84±0.15	4.49±0.36	18.49±0.11	2.569
$N_{jet}^{oentral} = 0$	27.92±0.16	1616.66±3.84	4.20±0.05	212.61±0.56	1.29 ± 0.07	12.56 ± 10.84	0.80±0.09	2.54±0.27	9.36±0.07	1.437
	$(m_R, m_H) = (390, 220)$	qqZZ	qqZZ(EW)	ggZZ	ttV	Z + jets	ti	VVV	WZ	s/\sqrt{b}
4ℓ	64.29±0.27	2516.10±4.47	2498.89±34.66	348.96±0.71	38.68±0.44	10.35±8.28	2.71±0.20	5.12±0.34	19.04±0.11	1.935
B-veto	62.15±0.27	2450.99±4.44	2326.25±33.62			10.35±8.28				1.920
$N_{int}^{control} = 0$	28.17 ± 0.18	1625.15±3.84	225.12±9.79	212.93±0.56	1.46±0.07	9.69±8.27	0.77±0.08	2.85±0.26	9.40 ± 0.07	1.368
$p_{\rm T}^{df} > 0.00 \& \text{Metsig} > 0.00$	28.17±0.18	1625.15 ± 3.84	225.12±9.79	212.93±0.56	1.46±0.07	9.69±8.27	0.77±0.08	2.85±0.26	9.40±0.07	1.368

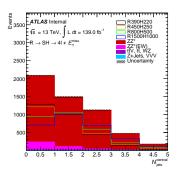
Figure: 0-cjets old (top) new (bottom)

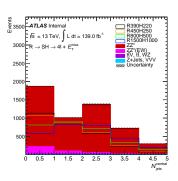

	$(m_B, m_H) = (390, 220)$		qqZZ(EW)	99ZZ	ttV	Z + jets	tt	VVV	WZ	8/Vb
4ℓ	64.17±0.24	2523.28±4.48	40.67±0.15	350.23±0.72	35.56±0.45	12.95±10.85	2.78±0.22	4.73±0.37	19.18±0.1	2 2.605
B-veto	62.00±0.24	2446.15±4.44		341.16±0.71	7.86±0.21	12.95±10.85				
$N_{\rm jet}^{\rm central} \ge 1$	34.08±0.18	829.48±2.23	32.92±0.13	128.56±0.44	6.57±0.20	0.40 ± 0.42	1.04±0.13	1.95±0.23	9.13±0.08	3 2.380
							-			
	$(m_R, m_H) = (390, 220)$	qqZZ	qqZZ(EW)	ggZZ	tiV	Z + jets	tt	VVV	WZ	s/√b
4ℓ	64.29±0.27		2498.89±34.66	348.96±0.71						1.93474
B-veto	62.15±0.27	2450.99±4.44								1.91980
$N_{\rm jet}^{\rm contral} \ge 1$	33.99±0.20		2101.14±32.16		7.33±0.20		0.99±0.12		9.08±0.08	1.36014
$p_{\rm T}^{tr} > 0.00 \text{ GeV & Metsig} > 0.00$	33.99±0.20	825.84±2.21	2101.14±32.16	128.71±0.43	7.33±0.20	0.66 ± 0.35	0.99 ± 0.12	2.11±0.21	9.08±0.08	1.36014


Figure: 1-cjets old (top) new (bottom)

New mini-trees production

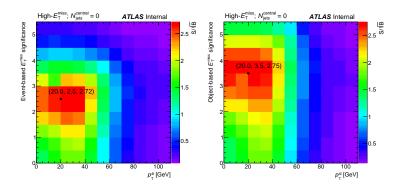
Kinematic distributions





 $\hfill \Box$ Object-based $\textit{E}_{\rm T}^{\rm miss}$ significance tends to favour high values

New mini-trees production Kinematic distributions



☐ The "n_cjets" branch is not filled properly (please don't use it for now)

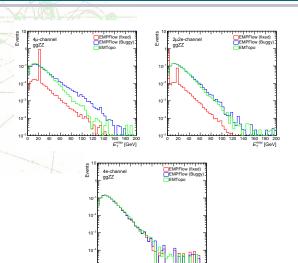
Object-based $E_{ m T}^{ m miss}$ significance

 \square Using the new samples the object-based $E_{\mathrm{T}}^{\mathrm{miss}}$ significance improves the significance by about 1%

Summary

- ☐ We need to check the new mini-trees to see why they have more events.
- \Box There's a little improvement on the significance when we use the object-based $E_{\mathrm{T}}^{\mathrm{miss}}$ significance. Perhaps is too early to come up with a conclusion.
- \square Now what will be the plan for the code that we're developing?

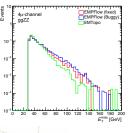
To do next . . .

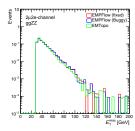

- ☐ I'm going to focus documenting what we did so far on the note.
- ☐ Also, get the expected limit for the 9 mass point that we have.

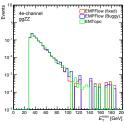
Thank you!

Additional slides

Met distribution for *ggZZ*




E_T^{miss} [GeV]


Additional slides

After applying a 30 GeV cut on the Met

	Event Selection					
QUADRUPLET	- Require at least one quadruplet of leptons consisting of two pairs of same-flavour					
SELECTION	opposite-charge leptons fulfilling the following requirements:					
	 - p_T thresholds for three leading leptons in the quadruplet: 20, 15 and 10 GeV 					
	- Maximum one calo-tagged or stand-alone muon or silicon-associated forward per quadruple					
	 Leading di-lepton mass requirement: 50 < m₁₂ < 106 GeV 					
	 Sub-leading di-lepton mass requirement: m_{threshold} < m₃₄ < 115 GeV 					
	- $\Delta R(\ell, \ell') > 0.10$ for all leptons in the quadruplet					
	- Remove quadruplet if alternative same-flavour opposite-charge					
	di-lepton gives $m_{\ell\ell}$ < 5 GeV					
	- Keep all quadruplets passing the above selection					
Isolation	- Contribution from the other leptons of the quadruplet is subtracted					
	- FixedCutPFlowLoose WP for all leptons					
Імраст	- Apply impact parameter significance cut to all leptons of the quadruplet					
Parameter	- For electrons: $d_0/\sigma_{d_0} < 5$					
SIGNIFICANCE	- For muons: $d_0/\sigma_{d_0} < 3$					
Best	- If more than one quadruplet has been selected, choose the quadruplet					
QUADRUPLET	with highest Higgs decay ME according to channel: 4μ , $2e2\mu$, $2\mu 2e$ and $4e$					
Vertex	- Require a common vertex for the leptons:					
SELECTION	$-\chi^2/\text{ndof} < 5 \text{ for } 4\mu \text{ and } < 9 \text{ for others decay channels}$					