

A CAS product for Mapping Urban Ecosystem Services online

Dr. Baolong Han Research Center for Eco-Environmental Sciences, CAS © Intelligent Urban Ecosystem Management System Which kind of visualization meets the needs of URBAN ECOLOGY?

Decision-making outputs

Calculate **EASILY**

Understand **EASILY**

Analytical results 方 🗼 🖽 🕅

- **Ecosystem components** •
- Science popularization

Monitoring data •

- Stakeholder participation
- + Ecosystem phenomena
- + Scientific research
- + Scientists

- + Ecosystem forecasting
- + Scientific research
- + Scientists

The modules of IUEMS (Intelligent Urban Ecosystem Management System)

Calculating

Drawing

Decision making

- Monitoring data & analysis
- 3D visualization
- Big data

Upload & calculate your data visually

Data uploader

GIS layers manager

Click to run/stop

Real-time visualization

Processing monitor

Visualizing at the urban level

Visualization at the megalopolis level

G-H-M Great Bay Area ecosystem analysis

3D visualization: Noise abatement map (under ß-testing)

Big data analysis: Demarcating the urban boundaries of human activity

Big data analysis: Human-bat contact probability map (under ß-testing)

Big data analysis: Ecosystem mental health service (under B**-test)**

Electroencephalogram(EEG) test for various vegetation cluster structures

Calculating

Drawing

• for engineers

• for managers

Decision making

Drawing for engineer

Select the color pallet

Drawing for decision maker

① Load 2 or more maps (different land-use scenarios) and then choose the color scheme

Calculating

Drawing

Decision making

- Marginal benefit analysis
- Scenario comparisons
- One-click version for government

Software platform application – Selecting ecological protection spaces for optimal benefits

Scenarios	Description	
Scen. 1	Intersection of each ES's first 30% part (cumulative)	
Scen. 2	First 30% of ES (cumulative) take out built-up area, Take out patch < 1 ha	
<u>Scen</u> . 3	First 30% of ES (cumulative) take out built-up area, Take out least important 5%	
Scen. 4	First 50% of ES (cumulative)	24
Scen. 5	First 50% of ES (cumulative) take out built-up area, Take out patch < 1 ha	2
Scen. 6	First 50% of ES (cumulative) c take out built-up area, Take out least important 5%	2
Scen. 7	First 50% of ES (cumulative) 2 ESs elasticity > 1 take out built-up area, Take out patch < 1 ha.	а
Scen. 8	First 50% of ES (cumulative) 3 ESs elasticity > 1 take out built-up area, Take out patch < 1 ha.	п
<u>Scen</u> . 9	First 50% of ES (cumulative) 3 ESs elasticity > 1 take out built-up area, Take out least important 5%	3 2

Scenario: Under a 120-mm rainfall situation, 48-mm depth of runoff could be reduced through a nature-based solution.

One-Click version for government use

Applications & Practices

- Beijing ecosystem restoration performance evaluation
- Macao ecological protection zoning
- Shenzhen GEP (Gross Ecosystem Product) evaluation
- Guangdong-Hongkong- Macao bay area ecosystem restoration plan
- JTP (Joint test platform) with InVEST (Stanford University) team
- WWF (World Wildlife Fund) training for urban research

Authorship & Partnership

11 U: university & research institute 7 C: consulting companies & NGOs 1 G: government

