Standard Model, New Physics and Higgs Factory

Qing-Hong Cao

School of Physics & Center of High Energy Physics, Peking University

People have long asked,

" Of what is the world made?" and "What holds it together?"

Elementary Particle Physics or High Energy Physics

Studying Fundamental Interactions (Forces) in Nature

Particle Physics: fundamental constituents of matter and their interactions

Particle Physics: Shorter distance and higher energy

Physics at different scales never talk to each other

Standard Model of Particle Physics

Spin $\frac{1}{2}$

Spin 1

History of unification

Particle Physics: fundamental constituents of matter and their interactions

Why is the solar system so stable?

$$F = G_N \frac{Mm}{r^2}$$

The MASS!

Why is the atom stable ?

Coulomb force

$$F = -K\frac{e^2}{r^2}$$

Schrodinger Equation

$$i\hbar\frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi - \frac{e^2}{r}\psi$$

No hydrogen atom exists if electron is massless

Why is the Sun
shinning as
millions of years
ago ?It looks sooooo
stable!

Nothing last for ever!

 $4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2\nu_{e} + 26.73 \text{ MeV}$

The sun is shinning through the Weak interaction which is weak. Why so weak?

H. Bethe 1939

The weak force carriers are too heavy!

The MASS!

Two outstanding puzzles in Standard Model

Higgs Discovery 4th July, 2012

The Particle Data Group has an entry for the Higgs boson after 2012

PDG2014

J = 0

Mass $m=125.7\pm0.4$ GeV

H⁰ Signal Strengths in Different Channels

```
Combined Final States = 1.17 \pm 0.17 (S = 1.2)

WW^* = 0.87^{+0.24}_{-0.22}

ZZ^* = 1.11^{+0.34}_{-0.28} (S = 1.3)

\gamma\gamma = 1.58^{+0.27}_{-0.23}

b\overline{b} = 1.1 \pm 0.5

\tau^+\tau^- = 0.4 \pm 0.6

Z\gamma < 9.5, CL = 95%
```

H⁰

PDG2018 J = 0

Mass $m = 125.18 \pm 0.16$ GeV Full width $\Gamma \ < \ 0.013$ GeV, CL = 95%

H⁰ Signal Strengths in Different Channels

See Listings for the latest unpublished results.

Combined Final States = 1.10 ± 0.11 $WW^* = 1.08^{+0.18}_{-0.16}$ $ZZ^* = 1.14^{+0.15}_{-0.13}$ $\gamma \gamma = 1.16 \pm 0.18$ $b\overline{b} = 0.95 \pm 0.22$ $\mu^+ \mu^- = 0.0 \pm 1.3$ $\tau^+ \tau^- = 1.12 \pm 0.23$ $Z\gamma < 6.6$, CL = 95% $t\overline{t}H^0$ Production = $2.3^{+0.7}_{-0.6}$ $\Gamma_H^{\rm SM} = 4 \text{ MeV}$ $\frac{\Gamma_H^{\rm SM}}{m_H} = 0.000032$

A common question:

You guys have discovered the Higgs boson, now what?

The Higgs boson is important not only for Electroweak symmetry breaking, but also as a WINDOW to NP beyond the Standard Model.

(2) Higgs boson: Fundamental or Composite

f: composite scale

Deciphering Higgs Property through Precision at the CEPC

New physics beyond the Standard Model

(three experiment evidences)

(1) Neutrino mass

Questions:1. Mass2. CP3. Majoranaorderingphaseor Dirac

(2) Dark matter

Rubin, Thonnard, Ford

"Such a velocity implies that 94% of the mass is located beyond the optical image; this mass has a ratio M/L greater than 100."

Vera Rubin

Dark matter is necessary galaxies together (and might be detectable via

My favorite new physics model

3. Matter and Antimatter asymmetry

Astrophysics looks at matter in its largest dimensions.

Two things are infinite. The Universe and human stupidity.

and I'm not sure about the Universe.

Thank You!

