Power dissipation

Zhijun Liang

Barrel Vertex detector machanism design

Engineering design on the ladder (module) of vertex detector and support structure.

Monolithic Sensor chip: 14.8 x 25.6 x 0.05 mm (not consider stitching yet)

Ladder: support structure + chips + flexible PCB

By Jinyu Fu

Power dissipation

- > Trigger mode: 100 mW/cm² (According to Wei)
 - ➤ Taichu full-size Chip : 1.48 x 2.56cm → 378mW
 - > : 1/3 power dissipation in data transmission block (126mW)
 - > 2/3 in pixel matrix (252mW)
- > Triggerless mode: 150 mW/cm²
 - \rightarrow Taichu full-size Chip : 1.48 x 2.56cm \rightarrow 417 mW
 - data transmission block (165mW)
 - > pixel matrix (252mW)

transmissior (126mW) Pixel matrix (252mW) Data

1.28cm

0.2cm

2.56 cm

Thermal mockup

- > Need help to design PCB heater to emulate the power dissipation of Taichu chip
- > maybe 2~3 version of PCB heaters?
 - ➤ One for trigger mode, one for triggerless mode ?
 - > One to emulate the power dissipation after irradiation

0.2cm 1.28cm Data transmission (126mW) Pixel matrix 2.56 cm (252mW)

PCB heater for ATLAS strip dummy module

Thermal simulation

- Even using long barrel design with large Air flow
 - However, the temperature b layer of vertex detector is still high (>50 °C)
 - Too close to beampipe (limited air flow)
 - New idea about new material (Graphene) (Quan's talk)
 - Much High heat conductivity compared to Carbon fiber
 - What is Limitation in air velocity?
 - Star HFT detector manage to provide 10m/s air flow)

Thermal simulation (By Jinyu Fu)

Power dissipation (mW/cm2)	Temperatu re of beam pipe's surface (°C)	Inlet air temperature (°C)	Inlet air velocity (m/s)	Max temperature of inner barrel (°C)	Max temperatur e of middle barrel (°C)	Max temperature of outer barrel (°C)
50	30	0	2	57.1	29.1	26.9
50	30	0	3	54.5	24.3	22.9
50	30	0	4	52.3	21.3	19.9

Power consumption: < 50 mW/cm² layer,

temperature <30 °C

Graphene

MOST2 midterm review

- ▶完成 传感 器芯 片上 所有功能模块的初步 设计,并把各功能模块 的设计集成,完成第二次传感器流片的设计。
 - ➤ 传感器像素单元尺寸 小于或等于 25 微米 × 25 微米 (基本完成?)
 - ▶通过仿真初步验证其抗辐照性能。 (可以实测?)
 - ➤ X光辐照测试具体需要测哪些参数?
- ➤ 研制出单个传感器 芯片的读出电子学、数据获取系统,对第一次 MPW 流片传感器芯片进行初步测试。(基本完成?)
- > 完成的探测器单元模块的读出电子学与数据 获取系统的初步设计。