

Search for new physics in dilepton final states with CMS run2 data

Xuyang Gao¹

1. Fudan University, Shanghai, China

TeV Particle Astrophysics 2021 (TeVPA 2021) @Chengdu, Sichuan

Search for resonant and nonresonant new phenomena in high-mass dilepton final states

- Many models designed to address the shortcomings of the SM high-mass Z' Gauge bosons resonances at the TeV scale
 - The sequential standard model Z'_{SSM} .
 - The GUT mode Z'_{ψ} .

- The Randall-Sundrum (RS) model of extra spatial dimension predicts a spin-2 graviton candidate that can be searched for in this final state as well.
- Nonresonant analysis for Contact Interaction and Large Extra Dimensional.

JHEP 07 (2021) 208

a

Event selection (ee channel)

CMS run2 dataset, ~137/fb

Looking for a "bump" particularly in the high mass tail.

□ Measure the corss section for hints of higher energy scale BSM.

Clean final state, with few background events.

- Reconstructed electrons are required to pass the official High-Energy-Electron-Pair (HEEP) selection.
- Double electron unprescaled trigger with lowest ET threshold is used.

MC samples are normalized to data in the Z peak region

All E_T independent effects are included in the normalization factor

All E_T dependent effects are considered in the analysis

Variable	Barrel	Endcap			
Acceptance selections					
E_{T}	$E_{\rm T} > 35 \; {\rm GeV}$	$E_{\rm T} > 35~{\rm GeV}$			
η	$ \eta_{\rm SC} < 1.4442$	$1.566 < \eta_{\rm SC} < 2.5$			
Identification selections					
isEcalDriven	true	true			
$\Delta \eta_{\rm in}^{\rm seed}$	$ \Delta \eta_{\rm in}^{\rm seed} < 0.004$	$ \Delta \eta_{\rm in}^{\rm seed} < 0.006$			
$\Delta \phi_{ m in}$	$ \Delta\phi_{\rm in} < 0.06$	$ \Delta\phi_{\rm in} < 0.06$			
H/E	$\rm H/E < 1/E + 0.05$	$\rm H/E < 5/E + 0.05$			
$\sigma_{{ m i}\eta{ m i}\eta}$	-	$\sigma_{i\eta i\eta} < 0.03$			
$\frac{\mathbf{E}_{1\times 5}}{\mathbf{E}_{5\times 5}}, \ \frac{\mathbf{E}_{2\times 5}}{\mathbf{E}_{5\times 5}}$	$\frac{E_{1 \times 5}}{E_{5 \times 5}} > 0.83 \text{ or } \frac{E_{2 \times 5}}{E_{5 \times 5}} > 0.94$	-			
Inner lost layer hits	lost hits ≤ 1	lost hits ≤ 1			
Impact parameter, d_{xy}	$ d_{xy} < 0.02$	$ d_{xy} < 0.05$			
Isolation selections					
EM + had depth 1	$iso < 2 + 0.03 E_T + 0.28 \rho$	iso $< 2.5 + 0.28 \rho~({\rm E_T} < 50~{\rm GeV})$			
isolation, iso		else iso $< 2.5 + 0.03(E_T - 50 \text{ GeV}) + 0.28\rho$			
p_{T} isolation (V7), isopt	isopt $< 5 \mathrm{GeV}$	isopt < 5 GeV			

- At least one electron should be in the barrel and no opposite charge requirement.
- Events are categorized to:
 - Barrel-Barrel events
 - Barrel-Endcap events

Event selection ($\mu\mu$ channel)

CMS run2 dataset, ~137/fb

- Reconstructed muons are selected via High p_T Muon ID.
- Main trigger is Mu50 in OR with two backup triggers at 100 GeV.

We do not touch the 2016 result, and only add it at the statistical analysis level to the 2017+2018 results

Selection optimized for high *p*_T muons Updated ID recovering 2-3% efficiency at high momenta

- Global muon reconstruction
- At least one muon chamber hit
- Muon segments present in at least one muon station other than the first one
- Relative error on muon best track $p_T < 30\%$
- d_{xy} < 2 mm, d_z < 5 mm
- At least one hit in the pixel tracker
- Number of tracker layers with hits > 5

To increase the yield of Z bosons we use a prescaled trigger which has the same performance as our signal trigger in the plateau

- Events are categorized to:
 - Barrel-Barrel (BB) events
 - non-BB events

Background study (ee channel)

- The dominant and irreducible SM background arises from the Drell-Yan process.
- Validated by measuring the Drell-Yan cross section of the Z peak [60 GeV, 120 GeV].

- Additional sources of background are processes which produce real prompt leptons where the two prompt leptons are from different particles, $t\bar{t}$, tW, WW, WZ, ZZ, $Z \rightarrow \tau\tau$.
- **Validated** in the $e\mu$ final state.

$$\frac{1}{2}N_{e\mu} = N_{ee} = N_{\mu\mu}$$

- Backgrounds arising from jets that are misidentified as electrons include W + jets and QCD processes are measured from data using the Fake Rate method.
- Validated in a control region : where both leptons are in the ECAL endcaps.

g

0000

No hints for any BSM excesses.

The limits are expressed as function of R_{σ}

$$R_{\sigma} = \frac{\sigma(pp \to Z' + X \to \ell\ell + X)}{\sigma(pp \to Z + X \to \ell\ell + X)}$$

Upper limits

Channel	Z'_{S}	SSM	Z'_{ψ}		
Charmer	Obs. [TeV]	Exp. [TeV]	Obs. [TeV]	Exp. [TeV]	
e e	4.72	4.72	4.11	4.13	
$\mu^+\mu^-$	4.89	4.90	4.29	4.30	
$e e + \mu^+ \mu^-$	5.15	5.14	4.56	4.55	

ATLAS result with 139 fb⁻¹: exclude Z'_{SSM} at 5.1 TeV and Z'_{ψ} at 4.5 TeV.

Channel	$k/\overline{M}_{\rm Pl} = 0.01$		$k/\overline{M}_{\rm Pl} = 0.05$		$k/\overline{M}_{\rm Pl} = 0.1$	
Charmer	Obs. [TeV]	Exp. [TeV]	Obs. [TeV]	Exp. [TeV]	Obs. [TeV]	Exp. [TeV]
ee	2.16	2.29	3.70	3.83	4.42	4.43
μμ	2.34	2.32	3.96	3.96	4.59	4.59
ee + µµ	2.47	2.53	4.16	4.19	4.78	4.81

Non-resonant interpretation of the high mass dilepton search

- Event selection, background estimation, and systematic uncertainties are identical to the search for resonant phenomena in the same final state but focus on the specific non-resonant signal models.
- The event sample is divided into several bins in invariant mass and the scattering angle cos(θ^{*}) in the Collins-Soper frame.

Four fermion Contact Interaction (CI)

- Caused by fermion substructure
- Consider constructive and destructive interference with DY
- 4 helicity models (LL, LR, RL, RR)
- Signal parameter: Energy scale Lambda

ADD model of large extra dimensions

- Spin-2 graviton excitations in the ADD model of large extra dimensions lead to non-resonant signal
- Serval parameter conventions: GRW, LHZ, Hewitt
- Signal Parameter: UV cutoff Lambda_T

$$\frac{\mathrm{d}\sigma_{\mathrm{X}\to\ell\ell}}{\mathrm{d}m_{\ell\ell}} = \frac{\mathrm{d}\sigma_{\mathrm{DY}}}{\mathrm{d}m_{\ell\ell}} + \eta_{\mathrm{X}}\mathcal{I}(m_{\ell\ell}) + \eta_{\mathrm{X}}^{2}\mathcal{S}(m_{\ell\ell}),$$

Upper limits

	GRW	Hewett			HLZ		
Order	$\Lambda_{\rm T}$ [TeV]	$M_{\rm S}$ [TeV]			$M_{\rm S}$ [TeV]		
		$\lambda = +1$	n = 3	n = 4	n = 5	n = 6	n = 7
			ee				
LO	6.7 (6.9)	5.9 (6.2)	7.9 (8.2)	6.7 (6.9)	6.0 (6.3)	5.6 (5.8)	5.3 (5.5)
LO ×1.3	6.9 (7.2)	6.1 (6.4)	8.2 (8.5)	6.9 (7.2)	6.2 (6.5)	5.8 (6.0)	5.5 (5.7)
			μμ				
LO	7.0 (7.1)	6.2 (6.4)	8.3 (8.5)	7.0 (7.1)	6.3 (6.4)	5.9 (6.0)	5.6 (5.7)
$LO \times 1.3$	7.2 (7.4)	6.5 (6.6)	8.6 (8.8)	7.2 (7.4)	6.5 (6.7)	6.1 (6.2)	5.8 (5.9)
Combined ee and $\mu\mu$							
LO	7.3 (7.5)	6.5 (6.7)	8.6 (8.9)	7.3 (7.5)	6.6 (6.8)	6.1 (6.3)	5.8 (6.0)
$LO \times 1.3$	7.5 (7.8)	6.7 (6.9)	8.9 (9.2)	7.5 (7.8)	6.7 (7.0)	6.3 (6.5)	5.9 (6.2)

Non-resnant

JHEP 07 (2021) 208

Lepton flavor universality

JHEP 07 (2021) 208

Search for heavy resonances and quantum black holes in $e\mu$, $e\tau$ and $\mu\tau$ final states in proton-proton collisions at $\sqrt{s} = 13$ TeV

• Charged lepton flavor is conserved in SM but can be violated in some BSM models, including R-parity violating (RPV) supersymmetry (SUSY) models, Microscopic quantum black holes (QBHs), and Gauge boson Z'.

R-Parity Violating SUSY

- $\tilde{v_{\tau}}$ resonance: lightest SUSY particle
- All RPV couplings = 0 except those allowing for LFV decay to a specific final state

Quantum black hole (QBH)

- Extra dimensions → TeV scale QBH
- Spin 0, colorless, neutral
- n=4 extra dimensions (ADD)

SSM-like LFV Z'

- Z-like couplings in quark sector
- LFV-only decays in lepton sector

• We present this search in $e\mu \ e\tau \ \mu\tau$ final states with the full CMS run2 data.

Event selection

CMS run2 dataset, ~137/fb

$\Box e\mu$: Single Muon, Single Photon	e μ	e $ au$	μau
\Box $e\tau$: Single Electron, Single Photon	Trigger:	Trigger:	Trigger:
(EGamma in 2018)	2016: Mu50 or TkMu50 or Photon175	2016: Ele27_WPTight_Gsf or Photon175 or	2016: Mu50 or TkMu50
$\Box \mu \tau$: Single Muon	2017: Mu50 or TkMu100 or	Ele115_CaloIdVT_GsfTrkIdT	2017-18: Mu50 or TkMu100 or OldMu100
	OldMu100 or Photon175	2017: Ele35_WPTight_Gsf or Photon200 or	
	2018: Mu50 or TkMu100 or OldMu100 or Photon200	Ele115_CaloIdVT_GsfTrkIdT	
The lepton candidates pair with highest		2018: Ele32_WPTight_Gsf or Photon200 or	
mass is chosen.		Ele115_CaloIdVT_GsfTrkIdT	
	MET filters	MET filters	MET filters
	e: $p_T > 35$ GeV, HEEP ID	e: $p_T > 50$ GeV, HEEP ID (V7.0.2018Prompt for 2018)	
Considering the τ candidate in this	$\Delta R > 0.1$ with any muon	(11.0-2010) 101101 2010)	
analysis has high momentum collinear	$\mu: \ p_{\mathcal{T}} >$ 53 GeV, $ \eta <$ 2.4, HighPt		μ : p_T $>$ 53 GeV, $ \eta $ $<$ 2.4, HighPt
analysis has high momentum, commean	ID, tracker iso < 0.1		ID, tracker iso < 0.1
mass is used as final discriminating		τ : $p_T > 50$ GeV, $ \eta < 2.3$, new DM finding (DM5.6 veto). DeepTau	τ : $p_T > 50$ GeV, $ \eta < 2.3$, new DM finding (DM5,6 veto), DeepTau
variable in $ au$ channels.		tight anti-jet, loose anti-e and tight	tight anti-jet, loose anti-e and tight
τ_{vis}		and μ	$(- E^{\text{miss}}) > 100 \text{ GeV}$
$\tau_{coll} = \frac{\tau_{coll}}{r}$		$m_T(e, \mathbb{E}_T^{\text{inder}}) > 120 \text{ GeV}$	$m_T(\mu, E_T^{}) > 120 \text{ Gev}$
$\sum_{\tau} p_T(\tau)$		Extra lepton veto	Extra lepton veto
$x = \frac{F_{I}(z)}{m_{I}(z) + m_{I}(z)}$	$\Delta R(e,\mu) > 0.1$	$\Delta R(e, au) > 0.5$	$\Delta R(\mu, au) > 0.5$
$\tau_{coll} = \frac{\tau_{vis}}{x}$ $x = \frac{p_T(\tau)}{n_{\pi}(\tau) + n_T^{miss}}$	$\Delta R(e,\mu) > 0.1$	$m_T(e, E_T^{miss}) > 120 \text{ GeV}$ Extra lepton veto $\Delta R(e, \tau) > 0.5$	$m_T(\mu, \mathrm{E}_\mathrm{T}^\mathrm{miss}) > 120 \; \mathrm{GeV}$ Extra lepton veto $\Delta R(\mu, au) > 0.5$

The lepton candidates pair wit mass is chosen.

$$\tau_{coll} = \frac{\tau_{vis}}{x}$$
$$x = \frac{p_T(\tau)}{p_T(\tau) + p_T^{miss}}$$

 $m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{l}p_{\mathrm{T}}^{\mathrm{miss}}(1 - \cos\Delta\phi(\vec{p}_{\mathrm{T}}^{l}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}))},$

Background study

CMS run2 dataset, ~137/fb

- One background is the processes which produces the leptons and is called "prompt background". [Monte Carlo]
 - $t\bar{t} \rightarrow 2l2\nu$: POWHEG binned M_{ll}
 - $WW \rightarrow 2l2\nu$: POWHEG binned in M_{ll}
 - *WZ*, *ZZ*: POWHEG and amc@NLO binned in decay mode
 - $DY \rightarrow ll$: amc@NLO binned in M_{ll}
 - Single Top : POWHEG, tW channel

Invariant mass distribution

Upper limits

Lower limits at 95% C.L. [TeV]						
	Z' LFV	RPV	QBH			
еμ	5.0	4.2	5.7			
еτ	4.2	3.7	5.3			
μτ	4.1	3.7	5.1			

PAS-EXO-19-019

Summary

- □ Search for high mass BSM are performed in dilepton final states using the proton-proton collision dataset at a center-of-mass energy of 13 TeV collected by CMS in 2016, 2017, and 2018, corresponding to integrated luminosities up to ~140 fb^{-1} .
- □ The observations are consistent with the expectations of the standard model in all searched channels.
- Upper limits on the cross sections are calculated and lower mass limits are set for various BSM models.

"Search for resonant and nonresonant new phenomena in high-mass dilepton final states \sqrt{s} = 13 TeV" JHEP 07 (2021) 208

"Search for heavy resonances and quantum black holes in $e\mu$, $e\tau$ and $\mu\tau$ final states in proton-proton collisions at \sqrt{s} = 13 TeV" PAS-EXO-19-019