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• Dark matter scatters, loses energy, becomes 
gravitationally bound to star

• Accumulates and annihilates in centre of the star
• Only neutrinos escape Sun→ IceCube, SuperK

In equilibrium: 
Annihilation rate = Capture rate 
→ controlled by DM-nucleon scattering cross section.
→ probes the same quantity as direct detection     

experiments 

Dark Matter Capture in Stars
→ an alternative approach to DM-nucleon scattering experiments
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DM number density depends on the Capture, Annihilation and Evaporation rates: 

𝑑𝑁𝜒

𝑑𝑡
= 𝐶 − 𝐴𝑁𝜒

2 − 𝐸𝑁𝜒

Neglecting evaporation (negligible in the Sun for 𝑚𝜒 > 4 GeV) we have

→ 𝑁𝜒(𝑡) =
𝐶

𝐴
tanh

𝑡

𝜏𝑒𝑞
where           𝑡𝑒𝑞 = 1/ 𝐶𝐴

The annihilation rate is then

Γ𝑎𝑛𝑛 =
1

2
𝐴𝑁𝜒

2 =
1

2
𝐶 tanh2

𝑡

𝜏𝑒𝑞
→

1

2
𝐶 when 𝑡 ≫ 𝜏𝑒𝑞 (capture-annihilation equilib.)

Capture, annihilation, evaporation
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Neutron Stars

Scattering

DM

Capture probability saturates at order unity when 
the cross section satisfies the geometric limit

𝜎𝑡ℎ ∼ 𝜋𝑅2
𝑚𝑛

𝑀∗
∼ 10−45cm2

Image: NASA 

Due to their extreme density, neutron stars capture 
dark matter very efficiently.
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Neutron Stars → Black holes?

• Due to their density, neutron stars capture dark matter very efficiently

• Can neutron stars accumulate so much dark matter that they would collapse to back 
holes? Yes, but typically only if:
• No annihilation (e.g. asymmetric DM)
• DM is bosonic and condenses to a small self gravitating BEC, or 
• DM is fermionic with attractive self-interactions, and
• No repulsive-self interactions that prevent collapse (even very very tiny self-interaction is 

enough) NFB, Petraki & Melatos, PRD 2013

→ Black hole formation possible but quite unlikely for typical WIMP-like dark matter

Kouvaris; Kouvaris & Tinyakov; McDermott, Yu & Zurek; Bramante, Fukushima & Kumar;  NFB, Petraki & Melatos; 
Bertone, Nelson & Reddy; and others.
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Neutron Star Kinetic Heating

Scattering

DM

M. Baryakhtar et al. 

PRL 119, 131801 (2017)

arXiv:1704.01577

TNS ~1700 K

1 - 2 μm

near IR

Collisions transfer the 
dark matter kinetic energy 
to the neutron star
→ heating
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Dark matter heating 
→ from scattering plus annihilation 

Baryakhtar, Bramante, Li, Linden and Raj 

• Capture (plus subsequent energy loss)
→ DM kinetic energy heats neutron star ~ 1700K

• Annihilation of thermalised dark matter
→ DM rest mass energy heats neutron star ~ additional 700K

Thermalisation is essentially guaranteed for unsuppressed DM-nucleon scattering.  If there is 
some kinematic suppression of the scattering process, it can take much longer (velocity or 
momentum suppressions; inelastic, etc)
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Direct Detection Neutron stars

DM velocity Non-rel
𝑣 ≪ 𝑐

Quasi-rel.
𝑣 ∼ 0.5 𝑐

Cross-sections Can be suppressed by 
velocity/momentum 

Unsuppressed

Momentum transfer < 𝒪 100 MeV 𝒪(10 GeV)

Density Normal matter Extremely high density

• no velocity/momentum suppression → sensitive to interactions that direct detection cannot probe

• not limited by recoil detection thresholds → sensitive to very low mass DM

• Similar sensitivity to SI and SD scattering 

Neutron Star Heating: Advantages
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Direct Detection vs Neutron Stars

Projected neutron star heating sensitivity: 
• comparable to direct detection experiments for scalar and vector interactions
• more sensitive than DD for all other interaction types (typically by orders of magnitude).

Operator Coupling Direct 
Detection

Momentum 
suppressed

DD vs NS

D1 SS ( ҧ𝜒𝜒)(ത𝑞𝑞) yq/Λ
2 SI  NS or DD

D2 PS ҧ𝜒𝛾5𝜒 (ത𝑞𝑞) yq/Λ
2 SI ✓ NS

D3 SP ( ҧ𝜒𝜒)(ത𝑞𝛾5𝑞) yq/Λ
2 SD ✓ NS

D4 PP ( ҧ𝜒𝛾5𝜒)(ത𝑞𝛾5𝑞) yq/Λ
2 SD ✓ NS

D5 VV ( ҧ𝜒𝛾𝜇𝜒 )(ത𝑞𝛾𝜇𝑞) 1/Λ2 SI  NS or DD

D6 VA ( ҧ𝜒𝛾𝜇𝜒 )(ത𝑞𝛾𝜇𝛾5𝑞) 1/Λ2 SI,SD ✓ NS

D7 AV ( ҧ𝜒𝛾𝜇𝛾5𝜒 )(ത𝑞𝛾𝜇𝑞 1/Λ2 SD ✓ NS

D8 AA ( ҧ𝜒𝛾𝜇𝛾5𝜒 )(ത𝑞𝛾𝜇𝛾5𝑞) 1/Λ2 SD  NS
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Kinetic Heating Sensitivity

Ball-park sensitivity
= geometric limit

𝜎𝑡ℎ~10
−45cm2

NFB, Busoni, Motta, Robles, Thomas & Virgato, arXiv:2108.02525
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Momentum 
transfer in 
single collision 
not sufficient 
for capture 
when 𝑚𝐷𝑀 >
106 GeV

Pauli blocking from 
degenerate neutrons 
restricts scattering 
when 𝑚𝐷𝑀 < 1 GeV.  
Need: momentum 
transfer > neutron 
Fermi momentum 

Kinetic Heating Sensitivity

NFB, Busoni, Motta, Robles, Thomas & Virgato, arXiv:2108.02525
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Neutron star sensitivity: DM-nucleon interactions

NFB, Busoni, Robles, arXiv:1807.02840 

unsuppressed SI scattering 𝒒𝟐 suppressed SD scattering 𝒒𝟒 suppressed SD scattering

NS sensitivity comparable 
to direct detection

NS sensitivity greatly surpasses direct detection experiments
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Improved capture calculations
Early treatments of the capture process used various simplifying assumptions.

Important physical effects include:

o Consistent treatment of NS structure
• Radial profiles of EoS dependent parameters, and GR corrections by solving the Tolman-

Oppenheimer-Volkov eqns. 
o Gravitational focusing

• DM trajectories bent toward the NS star
o Fully relativistic (Lorentz invariant) scattering calculation

• Including the fermi momentum of the target particle
o Pauli blocking 

• Suppresses the scattering of low mass dark matter
o Neutron star opacity

• Optical depth
o Multi-scattering effects

• For large DM mass, probability that a collision results in capture is less than 1

NFB, Busoni, Robles & Virgato,
JCAP 09, 028 (2020), JCAP 03, 086 (2021)  
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Two important effects neglected in all previous treatments:

• Momentum dependence of hadronic matrix elements
• Nucleon Interactions

→ This changes the capture cate by up to 3 orders of magnitude
(biggest effect for heaver NSs)

Phys. Rev. Lett. 127, 111803 (2021)
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1. Momentum dependence of hadronic matrix elements:

• Nuclear recoil experiments – calculated in zero momentum transfer limit
• Neutron star scattering – momentum transfer ∼ 10 GeV→ couplings suppressed

i.e. We can no longer treat nucleons as point particles

Nucleon level couplings become:

𝑐𝑛 𝑞 =
𝑐𝑛(0)

1−𝑞2/𝑄0
2 2 with 𝑄0~1 GeV

Note however, that the deep-inelastic scattering rate is always subdominant.

Phys. Rev. Lett. 127, 111803 (2021)
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2. Nucleon Interactions:
• Free fermi gas approach neglects strong interactions of nucleons
• Correct approach uses an effective nucleon mass 

Phys. Rev. Lett. 127, 111803 (2021)
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Including nucleon structure and strong interactions:
→ capture rate altered by up to 3 orders of magnitude

NFB, Busoni, Motta, Robles, Thomas & Virgato, Phys. Rev. Lett. 127, 111803 (2021)
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NFB, Busoni, Motta, 
Robles, Thomas 
and Virgato, 
arXiv:2108.02525

Including nucleon structure and strong interactions:
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Kinetic Heating Sensitivity:  nucleon scattering

Spin-Independent  (SI)                                                                       Spin-Dependent (SD) 

NFB, Busoni, Motta, Robles, Thomas and Virgato, arXiv:2108.02525
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Leptons in Neutron Stars

Beta equilibrium in the core 
determines the composition:

• Degenerate neutrons

• Smaller and approximately equal 
electron and proton abundances

• Small muon component
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Leptons in Neutron Stars

Beta equilibrium in the core 
determines the composition:

• Degenerate neutrons

• Smaller and approximately equal 
electron and proton abundances

• Small muon component
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Leptons in Neutron Stars
Lepton density of  few % in NS core, lower in crust.
Fermi-momentum ~ constant in core.

NFB, Busoni, Robles & Virgato arXiv:2010.13257 
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Electron scattering 

Muon scattering 

Lepton scattering – improved treatment (relativistic)
NFB, Busoni, Robles & Virgato arXiv:2010.13257 
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Dark matter capture in stars 
→ cosmic laboratory to probe dark matter scattering interactions

• Neutron stars probe a completely different kinematic regime to direct detection 
• Scattering of quasi-relativistic dark matter                                                                                       

→no velocity or momentum suppressions

• Capture calculations have recently been significantly refined and improved.

• Neutron Star kinetic heating sensitivity would potentially be better than current 
and forthcoming direct detection experiments, for both nuclear-recoil and 
electron-recoil scattering.

Summary & Conclusions
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Backup slides
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Deep inelastic scattering contribution is subdominant

NFB, Busoni, Motta, Robles, Thomas and Virgato, arXiv:2108.02525



TeVPA Particle Astrophysics 2021 (TeVPA 2021)  – 27 October 2021  – N. Bell, U.Melbourne 27

Spin-dependent

NFB, Busoni, Motta, Robles, Thomas and Virgato, arXiv:2108.02525
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Cooling and Heating

In the standard NS cooling scenario, nucleons and charged leptons in beta equilibrium

𝐶
𝑑𝑇∞

𝑑𝑡
= −𝑳𝝂

∞ − 𝑳 𝜸
∞ + 𝑳𝑫𝑴

∞ + 𝑳other heating
∞

= cooling by 𝜈 and 𝛾 emission  +  heating due to dark matter

• Early cooling is dominated by neutrino emission
• Photon emission dominates at late times

Coolest known neutron star (PSR J2144-3933) has a temperature of 4.2 x 104 K. 
Astrophys.J. 874 (2019) no.2, 175

Old isolated neutron stars should cool to: 1000 K after ~ 10 Myr
100 K after ~ 1 Gyr
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Detecting the Heating

FAST (radio) JWST (NIRCam)

TNS ~ 2000 K

1 - 2 μm
M. Baryakhtar et al. 

PRL 119, 131801 (2017)

arXiv:1704.01577

Nearby ≲ 50 pc
isolated old NSs

near IR
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NFB, Busoni, Robles & Virgato arXiv:2004.14888 Neutron star opacity
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NFB, Busoni, Robles & Virgato arXiv:2004.14888 Improved capture calculations

Including Pauli blocking, 
multiscattering and 
opacity effects. 


