

### Latest results from the CUORE experiment

Stefano Di Lorenzo on behalf of the CUORE collaboration

**TeV Particle Astrophysics 2021** 



### <sup></sup> <sup> </sup> Double beta decay

 $(A, Z) \longrightarrow (A, Z+2) + X$ 





- SM 2<sup>nd</sup> order weak transition
- even-even nuclei
- half lives 10<sup>18</sup> 10<sup>24</sup> yr

### <sup>'</sup> Neutrinoless double beta decay (0νββ)

Double beta decay is a rare second order Fermi weak interaction

Two decay channels usually considered:



- Lepton number violating process (∆L=2)
   ⇒ L is not a symmetry of nature
- Only possible if neutrinos have a Majorana component
  - $\Rightarrow$  new possible mechanism for v mass
- Possible explanation of matter-antimatter asymmetry origin via Leptogenesis

 $m_{_{etaeta}}=\sum_{i=1}m_iU_{ei}^2$ 

### Neutrinoless double beta decay $(0\nu\beta\beta)$

Light Majorana neutrino exchange mechanism for 0vββ decay

In this case, we define the Effective Majorana mass  $m_{\beta\beta}$ 



 $\bar{\nu}_e = \nu_e$ 



 $\Gamma_{_{0
u}}=G_{_{0
u}}|M_{_{_{1}0
u}}|^{^{2}}rac{\langle m_{_{etaeta}}
angle }{m^{^{2}}}$ 

#### Nuclear Matrix Element (NME):

source of uncertainty (different numerical calculations from several models)



### The CUORE experiment

### Cryogenic Underground Observatory for Rare Events

- Located at the LNGS underground facility (3650 m.w.e.)
- Main Physics goal: search for 0vββ decay of <sup>130</sup>Te
- $Q_{BB} = 2527.5$  keV above (most) natural  $\gamma$  backgrounds
- 988 natural TeO<sub>2</sub> crystals at ~10 mK
- 742 kg of TeO<sub>2</sub>  $\Rightarrow$  206 kg of <sup>130</sup>Te ~90% detection efficiency







### The CUORE cryostat challenges

**Requirements:** 

- Ton-scale detector hosted in a cryogen-free cryostat (mass < 4K: ~ 15 tons of Pb, Cu and TeO<sub>2</sub>)
- Operating temperature ~ 10 mK
- Low background level: goal of 10<sup>-2</sup> counts/(kev kg yr) at Q<sub>BB</sub>
  - Extremely low radioactivity
- Energy resolution: goal of 5 keV FWHM at <sup>130</sup>Te Q<sub>ββ</sub>
  - Low vibrations environment

• Run for ~5 yr



### The CUORE cryostat challenges

#### Solutions:

- Cryogen-free cryostat  $\rightarrow$  lower downtime
- 5 (4) Pulse Tubes (PT)  $\rightarrow$  down to ~4K
- Custom built Dilution Unit (DU)  $\rightarrow$  down to ~7mK
- Low-radioactivity materials choice, strict cleaning and assembling protocols
- Roman <sup>210</sup>Pb- depleted + modern lead shields
- Neutrons shield: external polyethylene layer with boric acid panels
- External support structure mechanically decouples the detectors from the cryostat
- PT phase cancellation



## The CUORE detector working principle



$$\Delta T = rac{\Delta E}{C_{abs}}$$
  
 $C_{abs}(T) \propto T^3$ 
 $100 \,\mu K/MeV @ T_0 \sim 10 \,mK$ 
 $T = rac{G}{C_{abs}} \sim 1 \,s$ 
 $T = \frac{G}{C_{abs}} \sim$ 

temperature variation energy deposition : absorber capacity gnal decay time hermal conductance : NTD parameters

$$R_{NTD}(T)\,=\,R_0\,e^{\sqrt{T_0/T}}$$

- Low heat capacity @ T<sub>0</sub>
- Excellent energy resolution (~1‰ FWHM)
- Equal detector response for different particles \_
- Slowness (suitable for rare event searches)

## Subset CUORE data taking



- data taking started in 2017
- 2017-2019: optimization campaigns to improve understanding and stability of the experiment
- since march 2019 steady data taking with >90% uptime
- steadily collecting data at an average rate of ~ 69 kg yr / month
- > 1.29 tonne yr raw exposure

### 



 CUORE "data set": 1 month of background (physics) data taking, few days of calibration before and after

### Voltage output continuously sampled (1 kHz) and stored on disk

• Periods with unstable data taking conditions excluded (e.g. earthquakes)



# CUORE data processing





### CUORE background model: Measurement of $2\nu\beta\beta$ decay of <sup>130</sup>Te





### Results of $0\nu\beta\beta$ decay of <sup>130</sup>Te

110E Counts / (2.5 keV) Best fit (global mode) 100 ROI: [2490 - 2575] keV 90% CI limit on  $\Gamma_{0v}$ 90 Total TeO<sub>2</sub> exposure: **1038.4 kg • yr** (15 datasets) Fit without  $0\nu\beta\beta$  component 80E No evidence of <sup>130</sup>Te  $0\nu\beta\beta$  decay is observed 70 60 50 40 30 Best Fit :  $\Gamma_{0y} = (0.9 \pm 1.4) \cdot 10^{-26} \text{ yr}^{-1}$ 2540 2490 2500 25102520 2530 2550 2560 2570 90% C.I. Bayesian limit: T<sub>1/2</sub> > 2.2 • 10<sup>25</sup> yr Energy (keV)

Background Index: BI =  $(1.49 \pm 0.04) \cdot 10^{-2}$  cts/keV/kg/yr

## <sup> $\Box$ </sup> Limit on effective Majorana mass (m<sub> $\beta\beta$ </sub>)

In the assumption that the  $0\nu\beta\beta$  decay is mediated by the exchange of a light Majorana neutrino:

$$\Gamma_{_{0\nu}} = G_{_{0\nu}} |M_{_{0\nu}}|^2 \frac{\langle m_{_{\beta\beta}} \rangle^2}{m_e^2}$$

$$\Gamma_{1/2} > 2.2 \cdot 10^{25} \text{ yr (limit 90\% C.I.)}$$

m<sub>в</sub> < 90 - 305 meV (90% C.I.)



Armengaus, E. et al. (CUPID-Mo Collaboration),Phys. Rev. Lett. 126, 181802 (2021) https://doi.org/10.1103/PhysRevLett.126.181802

Agostini, M. et al. (GERDA Collaboration), Phys. Rev. Lett. 125, 252502 (2020) https://doi.org/10.1103/PhysRevLett.125.252502 Azzolini, O. et al. (CUPID-0 Collaboration), Phys. Rev. Lett. 123, 032501 (2019) https://doi.org/10.1103/PhysRevLett.123.032501

Gando, A. et al. (KamLAND-Zen Collaboration), Phys. Rev. Lett. 117, 082503 (2016) https://doi.org/10.1103/PhysRevLett.117.082503

arXiv:2104.06906 (2021)

### <sup>J</sup> CUORE sensitivity

0νββ decay exclusion sensitivity in 5 yr (90% C.L.):  $S_{0v} \sim 9 \cdot 10^{25}$  yr,  $m_{\beta\beta} < 50-130$  meV with nominal background B:  $10^{-2}$  c/(keV · kg · yr) and nominal energy resolution of 5 keV FWHM in the ROI

CUORE TeO<sub>2</sub> detectors background:

- Degraded *α* particles
  - from radioactive decays close to the detectors or on their surface
  - deposit part of their energy in the detectors
  - constitute the main (~90%) contribution to the CUORE background index in the ROI
- Multi-Compton of γ
  - by the <sup>232</sup>Th/<sup>239</sup>U chains and cosmic muons
  - constitute the remaining background contribution



Armengaus, E. et al. (CUPID-Mo Collaboration),Phys. Rev. Lett. 126, 181802 (2021) https://doi.org/10.1103/PhysRevLett.126.181802

Agostini, M. et al. (GERDA Collaboration), Phys. Rev. Lett. 125, 252502 (2020)

https://doi.org/10.1103/PhysRevLett.125.252502

Lett. 117, 082503 (2016) https://doi.org/10.1103/PhysRevLett.117.082503



### What's next?

Next generation  $0\nu\beta\beta$  decay experiments seek to be sensitive to the full Inverted Hierarchy region:

$$S_{0\nu} \sim 10^{27} \text{ yr, } m_{\beta\beta} < 6-20 \text{ meV}$$

To reach these sensitivities:

- Reach the "zero background" regime
   ⇒ lower the background and improve energy resolution in the ROI
- II. Larger active mass



//doi.ora/10.1103/PhysRevLett.117.082503

https://doi.org/10.1103/PhysRevLett.125.252502



### CUPID

### CUORE Upgrade with Particle IDentification

- Li<sub>2</sub><sup>100</sup>MoO<sub>4</sub> scintillating crystals
- > <sup>100</sup>Mo  $\beta\beta$  decay candidate: Q<sub> $\beta\beta$ </sub> ~3034 keV
- Readout of both heat and scintillation light with thermal sensors
- > Alpha-particle rejection using light signal









#### 1 tonne of scintillating LiMoO, detectors

- ~1500 calorimeters, each cubic crystal ~300g
- Crystal enriched >95% in  $^{100}$ Mo (~250 kg of  $^{100}$ Mo)
- Ge light detectors
- LMO and LD read via NTD
- CUPID detector hosted in CUORE cryostat



### Background goal B < $10^{-4}$ c/(keV · kg · yr) in the ROI

- Particle ID ( $\alpha$  vs  $\beta/\gamma$ ) with scintillation light
  - Possible discrimination of  $2\nu\beta\beta$  pile-up from pulse shape
  - Background reduction: underground location at LNGS, passive shields (Pb/Cu), high-radiopurity in assembly and storage of detectors and materials, muon veto, profit of detector high granularity

### <sup>+</sup> Summary & Conclusions

- CUORE is the first ton-scale experiment for double beta decay search operating cryogenic detectors
- 1 ton · yr analyzed data milestone achieved
  - $\Rightarrow$  stable operation for ton-scale cryogenic detector is possible
- Data taking is smoothly ongoing aiming at 5 years live time
- New results on <sup>130</sup>Te 0vββ decay (1038.4 kg·yr exposure): most stringent half-life limit to date

arXiv:2104.06906 (2021)

arXiv:1907.09376 (2019)

- New results on <sup>130</sup>Te 2vββ decay (300.7 kg·yr exposure): most precise half-life measurement to date
   Phys. Rev. Lett., 126:171801, 2021
- CUORE demonstrates the potential for large-scale bolometric detectors. The same technology and

infrastructure will be used for the CUPID experiment.





# Thank you for the attention





# Spare slides





## The CUORE experiment

- Custom made dilution refrigerator
   ~ 10 mK base temperature
- 5 pulse tube cryocoolers (no helium bath)
- Nested copper vessels at decreasing temperatures
- Low temperature lead shielding (top)
- Low temperature roman lead shielding (side, bottom)



### CUORE challenges



- Ton-scale infrastructure cooled down by a custom built cryogen-free structure: 5 pulse tubes + <sup>3</sup>He/<sup>4</sup>He Dilution Refrigerator
- Operational T ~ 10 mK stable over years
- Background level goal of 10<sup>-2</sup> counts/(kev kg yr)
  - low -radioactivity materials choice, strict cleaning and assembling protocols
  - □ Roman <sup>210</sup>Pb- depleted + modern lead shields
  - Neutrons shield: external polyethylene layer with boric acid panels
- Energy resolution goal of 5 keV FWHM at <sup>130</sup>Te  $Q_{_{\beta\beta}}$ 
  - Minimization of vibrational noise: external support structure mechanically decouples the detectors from the cryostat

### CUORE challenges



- Ton-scale infrastructure cooled down by a custom built cryogen-free structure: 5 pulse tubes + <sup>3</sup>He/<sup>4</sup>He Dilution Refrigerator
- Operational T ~ 10 mK stable over years
- Background level goal of 10<sup>-2</sup> counts/(kev kg yr)
  - low -radioactivity materials choice, strict cleaning and assembling protocols
  - □ Roman <sup>210</sup>Pb- depleted + modern lead shields
  - Neutrons shield: external polyethylene layer with boric acid panels
- Energy resolution goal of 5 keV FWHM at <sup>130</sup>Te  $Q_{_{\beta\beta}}$ 
  - Minimization of vibrational noise: external support structure mechanically decouples the detectors from the cryostat

### The CUORE cryostat



Requirements:

- Ton-scale detector hosted in a cryogen-free cryostat (mass < 4K: ~ 15 tons of Pb, Cu and TeO<sub>2</sub>)
- Operating temperature ~ 10 mK
- Low background level: goal of 10<sup>-2</sup> counts/(kev kg yr) at Q<sub>ββ</sub>
   Extremely low radioactivity
- Energy resolution: goal of 5 keV FWHM at <sup>130</sup>Te  $Q_{\beta\beta}$  $\Box$  Low vibrations environment
- Run for ~5 yr

Solutions:

- Cryogen-free cryostat  $\rightarrow$  lower downtime
- 5 (4) Pulse Tubes (PT)  $\rightarrow$  down to ~4K
- Custom built Dilution Unit (DU)  $\rightarrow$  down to ~7mK
- PT phase cancellation

## The CUORE detector

Heat bath ~10 mK Cu

 $\sim$ 

Thermal coupling

Temperature sensor NTD Ge

Si Heater

Absorber crystal TeO<sub>2</sub>



Particle interaction 
$$\Delta T = \frac{\Delta E}{C_{abs}}; C_{abs} = C(T) \rightarrow \Delta E \simeq 1 \text{ MeV} \begin{cases} \Delta T \sim 10^{-18} - 10^{-15} \text{ K} @ T_0 \approx 300 \text{ K} \\ \Delta T \sim 0.1 \text{ mK} @ T_0 \approx 10 \text{ mK} \end{cases}$$

### The CUORE cryostat challenges

Stability of NTD resistances at WP during the CUORE data taking at 11 mK



### The CUORE sensors



### <sup>-</sup> CUORE detector response function

- Fit 2615 keV calibration peak for each channel
  - a) 3-Gaussian signal peak
  - b) Compton background
  - c) Flat background
  - d) 30 keV X-ray escape peak (background)
  - e) 30 keV X-ray sum peak (background)
- Detector response function is just component (a)
- Excluded channels with FWHM > 19 keV for this analysis



### CUORE detector response function (lineshape)



- Lineshape in physics data: most prominent peaks fitted
- Resolution appears energy dependent, small bias on energy reconstruction
- 2nd order polynomial fit to extract the resolution and bias energy dependence

- TeO<sub>2</sub> detectors exhibit a slightly non-gaussian response function
- Lineshape evaluated on the 2615 keV line in calibration: fit with 3 Gaussian for each detector-dataset
- Energy resolution in calibration is extracted (7.8(5) keV)



### <sup>'</sup> Cuts and Efficiencies

- Base cuts: periods of time with high noise level, processing failures, poor resolution detectors are excluded
- Anti-coincidence cut (AC): events within ± 5ms from another triggered event at > 40 keV in a distinct crystal are excluded
- **Pulse shape discrimination cut (PSD)**: abnormal pulse shape events (pile-up, non-physical pulses) are excluded

| Containment<br>efficiency | Single-hit event probability for 130Te<br>0vββ                                                                         | 88.35(9)%  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------|------------|
| Reconstruction efficiency | Probability that a signal event is<br>triggered and not rejected by base cuts,<br>the energy is properly reconstructed | 96.418(2)% |
| AC efficiency             | Probability that a signal event is not cut<br>due to an accidental coincidence with an<br>unrelated event              | 99.3(1)%   |
| PSD efficiency            | Probability of a physical event to survive the PSD cut                                                                 | 96.4(2)%   |



### ROI fit: new results on $0\nu\beta\beta$ decay of <sup>130</sup>Te

- Unbinned Bayesian fit simultaneously performed for each detector-dataset
   with BAT samples from the posterior distribution of all the parameters of
   the model with a Markov Chain Monte Carlo
- Uniform prior on the signal rate  $\Gamma_{0v}$
- ROI: [2490 2575] keV
- Total TeO<sub>2</sub> exposure: 1038.4 kg yr (15 datasets)
- No evidence of  $^{130}\text{Te}~0\nu\beta\beta$  decay is observed
- Systematics effects as nuisance parameters in the Bayesian fit (0.8% total effect on the Γ<sub>0v</sub> limit):
- Efficiencies

(reconstruction, anti-coincidence, PSD, containment)

- <sup>130</sup>Te isotopic abundance
- **Q**ββ
- Lineshape parameters (energy bias and resolution scaling)





### Exclusion sensitivity on the <sup>130</sup>Te $0\nu\beta\beta$ half-life

- 10<sup>4</sup> toyMC with background components only (no signal), floating the parameters extracted from the fit on data
- Bayesian fit with signal + background components independently run on each toyMC
- Extraction of the 90% C.I. half-life limit from each of the 10<sup>4</sup> Bayesian fits
- Exclusion Sensitivity = median of the half-life limits distribution ٠



36

### $^{\prime}$ CUORE background model: 2uetaeta decay of $^{130}$ Te



 $2\nu\beta\beta$  contribution to the CUORE spectrum can be disentangled through the Background Model fit



- Detailed GEANT4 MC simulation of the background sources
- Bayesian fit on experimental data with a linear combination of the MC simulations
- Fit on 350 keV 2.8 MeV energy region (dominated by 2νββ decay of <sup>130</sup>Te)
- Fit parameters: a normalization factor for each source is extracted and used to obtain the activity of the contaminants and half-lives of processes (e.g.  $2\nu\beta\beta$  decay T<sub>1/2</sub>)

