Long-term multi-wavelength variability of Markarian 421 and Markarian 501

Vitalii Sliusar, Roland Walter, Matteo Balbo on behalf of the FACT collaboration

University of Geneva, Department of Astronomy

TeVPA 2021

AGNs: blazars

- Blazars are radio loud AGNs with jet pointing to Earth:
 - Flat radio spectrum, radio loud
 - Emission is Doppler boosted and relativistically beamed
 - Blazars emit from radio to VHE gamma-rays
 - Optical emission is polarised
 - Emission is variable on different timescale
 - Emission in different bands may have a delay relatively to others
- Classification of blazars depending on synchrotron hump location: LBL, IBL, HBL and extreme-HBL (eHBL)
- Padovani & Giommi 1996: LBL $v_p < 10^{15}$, HBL $v_p > 10^{15}$
- Nieppola et al. 2006: LBL $v_p < 10^{14.5}$, IBL $10^{14.5} < v_p < 10^{16.5}$, HBL $V_{\rm p} > 10^{16.5}$
- Abdo et al. 2010: LBL $v_p < 10^{14}$, IBL $10^{14} < v_p < 10^{15}$, HBL $v_p > 10^{15}$

Emission mechanisms

- Particle acceleration
 - Diffusive shock acceleration
 - Relativistic reconnections
 - Stochastic acceleration
 - Magnetoluminescence
- Radiative processes
 - Leptonic: ultraletivistic electrons, synchrotron and IC radiation
- Handronic: proton-synchrotron, pion
 photoproduction
- Lepto-hadronic: mixture of leptonic and hadronic

Why Mrk 421 and Mrk 501?

• Bright blazars

- Easy to detect with IACTs, Fermi, in X-rays, optical and radio
 - Regular observations in TeV (MAGIC, FACT*), optical and radio
- Relatively easy to characterize the entire SED during single "observation"
 - Evolution of SED over time during individual flares
- No strong BLR effects
 - Less additional uncertainties than for FSRQs
- Nearby blazars (z ~ 0.03, ~140 Mpc)
 - Imaging with VLBI (MOJAVE, VLBA) down to scales of 0.01 pc (100 - 1000 R_s)
 - Minimal effect from EBL (which is not well known, and introduces systematics for VHE blazar science)

Mrk 421 & Mrk 501: overview

- Mrk 421 is a close HBL blazar
 - Bright and nearby blazar, z=0.031 (~122-133 Mpc)
 - $M_{BH} \sim 1.5 2.5 \times 10^8 M_{\odot}$
 - Imagined with VLBA up to <0.01-0.1 pc (<100-1000 rg)
 - Well defined jet structure extending for 4.5 mas (2.67 pc)
- Low energy hump:
 - synchrotron emission during relativistic electrons cooling
- High energy hump:
 - leptonic models:
 - one-zone SSC model (Celotti et al. 1998, Abdo et al. 2011)
 - multi-zone SSC model (Aleksić et al. 2015, Zhu et al. 2016)
 - hadronic models (Zech et al. 2017)
 - lepto-hadronic models:
 - synchrotron-proton model (Mastichiadis, Petropoulou 2013)
 - neutrino emission (Petropoulou 2015, Dermer Razzaque 2010)
 - etc.

- Mrk 501 is a close HBL blazar
 - Bright and nearby blazar, z=0.034 (~140 Mpc)
 - $M_{BH} \sim 2-9 \times 10^8 M_{\odot}$
 - Imagined with VLBA up to <0.01-0.1 pc (<100-1000 rg)
 - Well defined jet structure extending for 10-20 mas (~10 pc)
- Low energy hump:
 - synchrotron emission during relativistic electrons cooling
- High energy hump:
 - leptonic models:
 - one-zone SSC model (Ahnen et al. 2017, Acciari et al. 2020)
 - multi-zone SSC model (Ahnen et al. 2017, Acciari et al. 2020)
 - hadronic models (Mastichiadis et al. 2013, Zech et al. 2017)
 - lepto-hadronic models:
 - synchrotron-proton model (Mücke & Protheroe 2001)
 - neutrino emission (Petropoulou 2015, Dermer Razzaque 2010)
 - etc.

Mrk 421: temporal and spectral variability

- Mrk 421 is a target of numerous MW campaigns:
 - Synchrotron peak shifts between IBL (MW 2013) and HBL
 - One-zone SSC reasonably describes SED of Mrk 421
 - Flaring activity can also be described by twozone SSC: one zone producing quiescent emission and another smaller zone producing intraday variability
- Variability:
 - Highest in X-rays and VHE
 - Substantial variability in optical though not correlated with X-rays and VHE
 - Persistently low variability in radio and GeV
 - Intra-day variability in X-rays and VHE for typical and high states
 - Variability observed on sub-hour timescales on the top of flux variations occurring on multi-hour timescales (Acciari et al, 2020 ApJS 248, 29)

• 10⁻⁹

 10^{-12}

 10^{-12}

 10^{-13}

 10^{-14}

 10^{-15}

СШ

TeV

dF/dE

E²

• MW correlations:

- Optical and radio are widely and strongly correlated
- No correlation between the GeV band and the keV or TeV band
- Linear correlation between X-rays 2-10 keV and VHE above 200 GeV
 - No delays between the X-ray and VHE gamma-ray emissions (down to 3 minutes during April 15, Acciari+2020)

Mrk 501: temporal and spectral variability

- Mrk 501 is a target of numerous MWL campaigns
- Mrk 501 shows spectral variability in X-rays and VHE during flares \bullet
 - becoming eHBL during some flares
 - one-zone SSC generally does a good job, but introduction of a second small region may be necessary to describe a feature at 3 TeV

FACT: First G-APD Cherenkov Telescope

1 Pixel = 1 SiPM = 3600 G-APD cells

- Operates since October 2011 at La Palma, Roque de Los Muchachos, 2200 m a.s.l.
- Mirror area: 9.5 m² (Ø3.8 m)
- Camera FOV 4.5°, comprised of 1440 pixels (0.11° / pixel)
- Silicon based photo sensors (G-APDs): observations with strong moon light possible
- Operated fully remotely and automatically, large duty cycle (>2500h of data in 12 months)
- Integrated sensitivity: 0.137 ± 0.004 Crab / 50h
- Unbiased monitoring strategy:
 - Blazars, AGNs: Mrk 421, Mrk 501, 1ES 2344+51.4, 1ES 1959+650
 - Crab Nebula
 - Multi-Messenger and MWL alerts, e.g. AMON20160218, HESE20160427, HESE20160731, V404 Cyg.
- Quick Look Analysis to check source activity and generate ATels

Multi-wavelength campaign

December 14, 2012 - April 18, 2018

Instrument	Band	Mrk 421	Mrk 501
Fact	> 580 GeV	584 nights / 2071 hours	630 nights / 1783 hours
Fermi LAT	100 MeV - 300 GeV	1915 days	1793 days
Swift/BAT	15-50 keV	1706 days	1733 days
ΜΑΧΙ	2-20 keV	1181 days	_
Swift/XRT	0.3-2 keV, 2-10 keV	478 days / 652 hours	285 days/246 hours
Swift/UVOT	UV (UVW1, UVM2, UVW2 filters)	752 measurements	298 measurements
Kuiper (1.54m) & Bok (2.3m)	V-band	379 measurements	283 measurements
OVRO (40m)	15 Ghz	329 measurements	221 measurements

V. Sliusar | Mrk 421 & 501 long-term | TeVPA 2021, 27.10.2021

MWL campaigns: Arbet-Engels+MB+VS+RW, A&A, 2021

- Mrk 421 observations from December 2012 to April 2018 \bullet
 - Mrk 421 was found in all states: typical, low, high
 - Data from radio to VHE (FACT), 9 instruments in total, unbiased observations

MWL campaigns: Arbet-Engels+MB+VS+RW, A&A, 2021

- Results:
 - Fvar has a typical two peak structure:
 - lowest variability in radio and GeV
 - highest variability in X-rays and TeVs
 - X-rays are strongly correlated with TeVs with sub-day lag (<0.6 days)
 - Radio, optical and GeV are not correlated with X-rays or TeV
 - Radio, optical are widely correlated with GeV with later leading by 30-100 days.
 - Observed variability is compatible with one-zone SSC scenario
 - 22 individual TeV flares were identified:
 - distribution of time separation between those is peaking between 7.5 and 30 days
 - such time separation compatible with expected duration due to Lense–Thirring accretion disc precession

Inter-flare period for TeV flares

11

MWL campaigns: Fact Collaboration+VS+MB+RW, accepted in A&A

- Mrk 501 observations from December 2012 to April 2018
 - Mrk 501 was found in all states: typical, low, high
 - Data from radio to VHE (FACT), 8 instruments in total, unbiased observations

- Results:
 - F_{var} has a typical two peak structure:
 - lowest variability in radio and GeVs
 - highest variability in TeVs and X-rays
 - X-rays strongly correlated with TeVs with a sub-day lag (<0.4 days)
 - Radio, optical and GeV are not correlated with X-rays or TeV.
 - Radio, optical are widely correlated with GeV lagging by ~200 days.
 - Observed variability is compatible with one-zone SSC scenario
 - 37 individual TeV flares were identified:
 - days
 - Thirring accretion disc precession

Mrk 421 and Mrk 501 variability

- "Falling segments" of the low- and high-energy bumps of SED are more variable than "rising segments"
 - within the SSC, since X-ray and VHE are produced by the highest-energy electrons
 - highest variability in the X-ray and TeV band
- TeV and X-ray flares are coincident
- Mrk 501 has somewhat different variability pattern during flaring and long-term periods:
 - monotonic increase during flares
 - double-peaked on long-term (mixed states)

Conclusions

- Mrk 421:
 - Observed cooling times are compatible with the SSC and incompatible in X-rays and TeV with leptono-hadronic and hadronic models
 - X-ray and TeV flares are well correlated:
 - 93% of the TeV flares are coincident with X-ray ones
 - TeV-X-rays lag is 0.09±0.57 days
 - Radio emission lags behind GeV with a delay of ~40 days •
- Mrk 501:
 - X-ray and TeV flares are well correlated:
 - only ~50% of the TeV flares are coincident with X-rays ones
 - TeV-X-rays lag is 0.31±0.38 days
 - Radio emission lags behind GeV with a delay of ~200 days •
- Common for Mrk 421 and Mrk 501:
- The strongest variability is in the X-ray and in the TeV bands
- Long term observations are compatible with one-zone SSC model •

Thank you!

