

Status of the SABRE South dark-matter experiment

Federico Scutti on behalf of the SABRE South collaboration **Swinburne University of Technology**

Dark matter direct detection

Standard Halo Model:

- "Cold" dark matter (WIMP) with Maxwellian velocity distribution in isotropic and isothermal sphere.
- Canonical value for density: *ρ*≈0.3 GeV/cm³.
- WIMP wind:

$$v_E = v_{\odot} + v_{\oplus} \cos(\theta) \cos[\omega(t - t_0)]$$

• $\theta \approx 60^{\circ}$ earth orbit inclination wrt galactic plane.

WIMP

• Max: 2 June, Min: 2 Dec.

$$S(t) = B + S_0 + S_m \cos \left[\omega(t - t_0)\right]$$

- E_R in **1÷100 keV**.
- Harder to softer spectrum expected with modulation.
- Signal rate \approx **1 count / day / kg / keV** (cpd/kg/keV).
- Small modulation expected: $S_m/S_o \approx O(5\%)$.

DAMA/LIBRA results

DAMA/LIBRA

- Modulation observed for 14 years with **12.9** σ significance!
- Located at Laboratori Nazionali del Gran Sasso (LNGS), Italy.
- Total target mass = 250 kg of NaI(Tl).

Claim in tension with other experiments but these are not based on NaI target.

Need **model independent** verification of result based on identical target material.

Sodium iodide with Active Background REjection

Model independent search at the SABRE South experiment at the SUPL laboratory

Southern hemisphere

• First NaI detector in the southern hemisphere allowing exclusion of seasonal effects.

High purity crystals • Low K contamination.

Low energy threshold • 1 keV threshold.

Active bkg veto

• High background rejection.

SABRE South Collaboration

46 members among 5 institutions:

Australian National University Australian Nuclear Science and Technology Organisation Swinburne University of Technology The University of Adelaide The University of Melbourne

Stawell Underground Physics Laboratory

Located in an active gold mine at Stawell ~240 km North West of Melbourne.
Depth of 1024 m with flat over burden.

Stawell Underground Physics Laboratory

Federico Scutti

Stawell Underground Physics Laboratory

Cavern walls:

- pinned with steel.
- Sprayed w/ low radioactivity "shotcrete".
- Coated with Tekflex.

- Cavern excavation completed in June.
- Construction materials screened for radioactivity.
- On track for completing construction in December 2021.
- SABRE construction and commissioning in early 2022.

Federico Scutti

8

SABRE Detector

Calibration

sources

.

Muon veto: plastic scintillator External shielding: steel + polyethylene

Veto vessel: _____ stainless steel + lumirror reflector

Liquid scintillator: 12000 L of LAB + PPO & Bis-MSB Crystal array: NaI(Tl) crystal 2 x 3" R11065 Hamamatsu PMTs

Veto PMTs: 18 x 8" R5912 Hamamatsu PMTs

🔊 <mark>3 III</mark> 🥥

NaI(Tl) detectors

Array of 7 detectors. Purged with high purity dry N₂. Feedthrough plate **OFHC** copper enclosure w/ 3 mm wall thickness 7 kg NaI(Tl) Internal Teflon structure crystal. Light-yield ~10 PE/keV 3" Hamamatsu R11065 PMT: • low background metal body. • QE > 30% @ 420 nm. • readout @ 500 MS/s with CAEN V1730. • operated at threshold ~0.3 SPE peak.

NaI(Tl) crystals

- Test crystal of 5 kg by RMD using the vertical Bridgman-Stockbarger method.
- Currently being prepared for testing at LNGS.
- ICPMS measured ^{nat}K: tip 5 ppb, bulk <10 ppb.
- RMD has previously grown a 3.4 kg crystal (NaI-33) for SABRE with very low background [1].

	K [ppb]	²³⁸ U [ppt]	²³² Th [ppt]
SABRE ^[1] Nal-33	4.7±1.4	<1	<1
DAMA ^[2]	13	<10	<10
COSINE-100 [3]	17.8	<20	0.6

• [1] M. Antonello, et al.," Characterization of SABRE crystal NaI-33 with direct underground counting." Eur. Phys. J. C 81, 299 (2021).

- [2] R. Bernabei, et al. "The DAMA/LIBRA apparatus." Nucl. Instrum. Methods Phys. Res. A: 592.3 (2008): 297-315.
- [3] G. Adhikari, et al. "Initial performance of the COSINE-100 experiment." The European Physical Journal C 78.2 (2018): 1-19.

Quenching factors

- Measured Na QF in NaI(Tl) using spectrum fitting for 30-300 keV neutron recoils.
- Used Heavy Ion Accelerator facility (HIAF) at ANU to obtain pulsed neutron beam.
- Recoil spectrum obtained using simulation and a fit to data was used to constrain the QF.
- New measurements are underway using Astrograde offcuts from SABRE South test crystal.

L. J. Bignell, et al. "Quenching factor measurements of sodium nuclear recoils in NaI: Tl determined by spectrum fitting." Journal of Instrumentation 16.07 (2021): P07034.

Federico Scutti

NaI(Tl) detector assembly and insertion

- Assembly procedure validated with mock-up enclosure.
- Crystal insertion/extraction system developed in collaboration with INFN Roma.
- The operation requires the removal of a shielding top section and the use of a glove box.
- Glove box built by <u>Palazzi SRL</u> has passed leak tests.

Federico Scutti

Active veto system

- 40K, ²²Na, ²³⁸U, ²³²Th.
- ³H, ⁸⁷Rb, ²¹⁰Pb: veto not effective.
- Sensitive up to >100 keV of energy deposition.
- Veto PMT readout @ 500 MS/s.

E [keV] <u>M. Antonello, et al., "Monte Carlo simulation of the</u> <u>SABRE PoP background." Astropart. Phys. 106, (2019).</u>

12

14

10

0.05

0^L

2

6

8

18

16

20

PMT characterisation

For 1 keV threshold in NaI(Tl) detectors require

	QE	Gain	Dark Rate @ 0.3*SPE Peak
R11065 – crystal	> 30%	107	<1000 Hz
R5912 – veto	~ 25%	107	<2000 Hz

- Absolute Quantum Efficiency (QE).
- Single PhotoElectron (SPE) response and Gain.
- Dark rate as a function of voltage and temperature.
- Timing characteristics.

R5912 – Model Fitted SPE Charge

Active veto system

- Vessel built by <u>Tasweld</u> <u>Engineering</u> and delivered in 2019.
- Liquid scintillator (LAB) from Nanjing via <u>JUNO</u>/IHEP.
 - Photon attenuation > 20 m.
 - ${}^{238}U/{}^{232}Th/{}^{40}K < 10^{-17} \text{ g/g}.$

Muon veto system

- Panels of EJ200 plastic scintillator (3 x 0.4 x 0.05 m) with PMTs at both ends. Readout @ 3.2 GS/s.
- Additional tagging of cosmic muons.
- Required for muon measurements at SUPL in combination with vessel veto.

DAQ and conditions monitoring

DAQ

Conditions

- DAQ managed by online systems.
- Each subdetector has dedicated digitisers with shared clock.
- Readout via fiber optics.
- External trigger board applies trigger logic for event triggers.
- Basic event building performed on-site before data transmission to Melbourne.

Monitoring: PMT HV, temperature of crystal units, humidity, Radon, vibrations.

S. Krishnan, et al. "A scalable and reconfigurable industrial-grade Slow Control System for SABRE-South Dark matter experiment." Journal of Instrumentation 16.03 (202 1): P03002.

Expected sensitivity

- Sensitivity estimated using 50 kg NaI(Tl) and expected background rate of ~0.36 cpd/kg/keV [4].
- For a DAMA-like signal: 5 σ discovery in 2 years, 5 σ exclusion in 5 years [5].

• [4] M. Antonello, et al. "Monte Carlo simulation of the SABRE PoP background." *Astroparticle Physics* 106 (2019): 1-9.

• 5 M. J. Zurowski, and E. Barberio. "Influence of NaI background and mass on testing the DAMA modulation." arXiv:2107.07674.

Federico Scutti

Conclusions

- SUPL construction is ongoing and expected to be completed in December 2021.
- SABRE South hosted at SUPL is expected to start running in early 2022.
- SABRE South should be able to confirm (exclude) a DAMA-like annual modulation signal at 5 σ within 2 (5) years since its start.

- Working toward publishing:
 - SABRE South background model based on simulation.
 - Photomultiplier characterisation methods and initial results.
 - Technical design report.

Backup

Expected sensitivity

- Sensitivity estimated using 50 kg NaI(Tl) and expected background rate of \sim 0.36 cpd/kg/keV [4].
- For a DAMA-like signal: 5 σ discovery in 2 years, 5 σ exclusion in 5 years [5].

• [4] M. Antonello, et al. "Monte Carlo simulation of the SABRE PoP background." *Astroparticle Physics* 106 (2019): 1-9.

• [5] M. J. Zurowski, and E. Barberio. "Influence of NaI background and mass on testing the DAMA modulation." arXiv:2107.07674.

Federico Scutti