High-energy neutrinos and γ-rays from the AGN-driven wind and torus in NGC 1068 Susumu Inoue (Bunkyo U./RIKEN), Matteo Cerruti (APC) Kohta Murase (PSU/YITP), Ruo-Yu Liu (Nanjing U)

importance of AGN winds

thermal, baryonic plasma; weakly collimated <-> rel. jets

1. Observed to exist, widespread (radio-quiet or radio-loud) ~<pc – blueshifted ion abs. (X-ray UFOs; UV BAL outflows) v>~0.1c, L_{kin}~<L_{Edd}, M~<M_{edd}

- ~<kpc ion abs. (X-ray WAs; UV NAL), ion emi. (UV-IR) v>~1000km/s
- >~kpc molecular emi. (CO, OH, etc.) v~<1000 km/s, \dot{M} ~<100 M_{Θ}/yr, L_{kin}~<L_{bol}
- 2. Plausibly expected from accretion disks via various mechanisms (unlike jets): thermal, radiative, magnetic...
- 3. May provide mechanical/thermal feedback onto host gas -> observed BH scaling relations, star formation quenching
- 4. May be particle accelerators + nonthermal emitters weakly beamed, quasi-isotropic

NGC 1068: Seyfert II with fast wind + obscuring torus

high-energy neutrinos from NGC 1068?

IceCube 10-yr time-integrated source search 1910.08488

- most significant point in North from full-sky scan coincident with NGC 1068
- 2.9σ excess at position of NGC 1068 in source catalog search
- soft, TeV-range spectrum inferred
- some indications in time-dependent search 2109.05818

neutrino + gamma from NGC 1068: AGN origin?

potential particle acceleration via:

- internal shocks caused by highly variable wind ejection (observational evidence + theoretical support)
- "interaction" shocks with external or internal clouds/stars

py ν +y from inner regions of AGN winds

potential particle acceleration via:

- internal shocks caused by highly variable wind ejection (observational evidence + theoretical support)
- "interaction" shocks with external or internal clouds/stars

7

potential particle acceleration via:

- internal shocks caused by highly variable wind ejection (observational evidence + theoretical support)
- "interaction" shocks with external or internal clouds/stars

potential particle acceleration via:

- internal shocks caused by highly variable wind ejection (observational evidence + theoretical support)
- "interaction" shocks with external or internal clouds/stars

py interactions with nuclear radiation

- neutrinos ~<TeV-PeV
- cascade ~<MeV-GeV</p>

$$p+\gamma \rightarrow N+ \pi^{0}, \pi^{\pm}$$

$$\pi^{0} \rightarrow 2\gamma \quad \pi^{\pm} \rightarrow \mu^{\pm} \nu \rightarrow e^{\pm} + 3\nu$$

$$\mu^{\pm} + B \rightarrow \mu^{\pm} + \gamma \qquad \text{muon synchrotron}$$

$$\uparrow^{\gamma+\gamma \rightarrow e^{+}e^{-}}_{e^{+}e^{-} + \gamma} \quad \text{electron-positron}$$

$$e^{+}e^{-} + B/\gamma \rightarrow e^{+}e^{-} + \gamma \quad \text{sync./IC cascade}$$

 $p+\gamma \rightarrow p+e^+e^-$ Bethe-Heitler pair production $p+B \rightarrow p+\gamma$ proton synchrotron

potential particle acceleration via:

- internal shocks caused by highly variable wind ejection (observational evidence + theoretical support)
- "interaction" shocks with external or internal clouds/stars

py interactions with nuclear radiation

- neutrinos ~<TeV-PeV
- cascade ~<MeV-GeV</p>

NB: photoelectric abs.+ extinction in torus-> mid IR - soft Xsignificantly attenuated

 $p+\gamma \rightarrow p+e^+e^-$ Bethe-Heitler pair production $p+B \rightarrow p+\gamma$ proton synchrotron

wind internal pγ model for NGC 1068

- neutrinos: flux and spectrum reasonable wrt IceCube
- photons: hadronic cascade consistent wrt available MWL
 γγ attenuated at GeV-TeV by disk UV-X
 prominent at (keV-)MeV -> interesting for future instruments

log E[eV]

pp $\gamma(+\nu)$ from AGN wind+torus interaction

wind + torus interaction (inevitable)

- -> external shock formation -> proton acceleration
- -> pp interactions with torus gas
- -> GeV escape, TeV $\gamma\gamma$ attenuated with torus IR

wind internal py + torus pp model for NGC 1068 [eV]

GeV: pp γ-rays from wind-torus interaction shock
 TeV: γγ attenuated by torus IR

$$\begin{aligned} &R_{tor} = 10^{17} \text{ cm}, n_{tor} = 10^{7} \text{ cm}^{-3}, B_{tor} = 0.1 \text{ G} \\ &v = 1000 \text{ km/s} \\ &L_{p} = 2.3 \times 10^{41} \text{ erg/s}, E_{p,max} = 2.5 \times 10^{14} \text{ eV}_{12} \end{aligned}$$

polarized optical-NIR: nuclear emission scattered into LOS

summary

fact: AGN winds - fast, powerful, widespread, inc. NGC 1068

interpretation of TeV ν + GeV γ for NGC 1068

- p accel. in inner regions near nucleus
- assuming v~1000 km/s, py neutrinos with soft TeV spectrum
- cascade photons $\gamma\gamma$ attenuated at GeV-TeV, prominent at MeV
- p accel. in wind-torus interaction shock, pp γ -rays at GeV

future tests and prospects

- cascade MeV, variability correlation w. polarized optical-NIR
- other nearby Seyferts with winds by IceCube-Gen2, CTA, etc
- contribution to diffuse v background
- unique info on AGN winds (B field, etc)

Paper to be submitted soon please stay tuned!

