

Measurement of the attenuation length of muon in the air shower with muon detectors of LHAASO-KM2A

Xiaoting Feng, Hengying Zhang, Cunfeng Feng, Lingling Ma

for LHAASO collaboration

fengxt@mail.sdu.edu.cn

Institute of Frontier and Interdisciplinary Science, Shandong University

Institute of High Energy Physics, Chinese Academy of Sciences

TeVPA2021 Chengdu 27-10-2021

Outline

Motivation

• LHAASO and muon detector

The muon attenuation length

Conclusions

Motivation

- the muon in extensive air showers (EAS) play an important role for understanding air shower physics.
 - Muon carry information about hadronic interaction of EAS
 - The attenuation of muon affect the evolution of the muon content of EAS
- KASCADE-Grande find the deviation between data and MC.
 - shower energies between 20 PeV-100 PeV
- LHAASO has more than 1100 muon detectors(MD)
 - validate the attenuation length in different energy region

LHAASO and muon detector

Large High Altitude Air Shower Observatory, LHAASO Daocheng SiChuan, altitude: 4410 m $(597g/cm^2)$ KM2A covers an area of 1.3 km^2 1188 MDs with space 30 m

5216 electronic detectors (EDs) with space 15m

¢13.9m soil iron plate PMT ultra-pure water of .8m concrete tank

schematic of the LHAASO MD

The sensitive area is $36 m^2$ Ultra-pure water: diameter 6.8 m, height 1.2 m PMT: 8 inches Covered with 2.5 m soil to absorb other charge particles Cherenkov radiation

Layout of LHAASO

Validation of the muon detector

- The single muon peak is used to calibrate the number of muons of the muon detector
- The muon number of unit detector > 0.2, data and simulation is consistent
- N_{μ} : the total muon number of all fired muon detector within the ring 40 m-200 m from the core of the shower
 - The muon spectrum is also consistent

 $N_{\mu v} \sim E_{rec}$

- the line relation between $N_{\mu_{-V}}$ and E_{rec} (reconstruction energy, ho_{200})
 - N_{μ_v} : the muon number (N_{μ}) of the near vertical event at the aperture [0,18.5°]
 - data is matched well with simulation
 - $lg(N_{\mu_v}) = -3.1 + 0.90 * lg(E_{rec})$ (data), $lg(N_{\mu_v}) = -3.1 + 0.89 * lg(E_{rec})$ (simulation) 6

Data and event selection

 $R_p <= 100m$, $(R_p: distance from shower core to array center)$ NpE3>30(NpE3: number of charge particle of ED within r=40-200 m) $N_{\mu} > 10$ NtrigE >=30

The same cut conditions were used for data and simulated data to obtain high-quality events

Table: Statics of experimental and simulation data after cut

Model	QGS+Gheisha_ Proton	QGS+Gheisha_ Fe	EPOS+Fluka_ Proton	EPOS+Fluka_ Fe	All components of EPOS+Fluka	data
after cut	42,308	21,206	46,196	23,554	98,055	4.1M

Constant intensity cut

- The intensity of CR is isotropy
 - Under different zenith angles, the same intensity corresponds to same CR primary energy.
- The observed muon number at same flux varies as θ ,
 - path increase as θ -> muon decay ->observed muon number decline

$$N_{\mu}(\theta) = N_{\mu}^{0} e^{-X_{0} sec\theta/\Lambda_{\mu}}$$

 N^0_{μ} is a normalization parameter to be determined for each attenuation curve Λ_{μ} is the muon attenuation length, as an appropriate physical quantity to study the evolution of the

muon content of EAS

 X_0 is the average atmospheric depth for vertical shower at the LHAASO attitude for 597 g/cm^2

Constant intensity cut

integral muon spectrum

- Five zenith-angle intervals with the same aperture: [0,18.5°], [18.5°, 26.5°], [26.5°, 33.2°], [33.2°, 39.2°], [39.2°, 45°]
- integral muon intensity J(>N $_{\mu}$ θ) for each angular bin
- the six intensity cut is performed within $\lg J \approx [4.4, 5.9] \Delta \lg J=0.3$
 - corresponding to N_{μ} wthinin $\lg(N_{\mu}) \approx [1.6, 2.4]$
 - with full efficiency and maximum statistics

Muon attenuation length of experimental data

- the points with different colors corresponding to different integral intensity cut
- the slop of curve indicate the attenuation length
- attenuation length by fitting $N_{\mu_v}(\theta) = N_{\mu_v}^0 e^{-X_0 sec\theta/\Lambda_{\mu_v}}$
- point represents the attenuation length, line represents the statistic error
 - the Λ_{μ} decrease as the J_{μ} increase
 - the larger J_{μ} correspond to smaller N_{μ} (means smaller energy)

Muon attenuation length of simulation

- Mixed component following Gaisser CR spectrum
- Five zenith-angle intervals with the same aperture: [0,18.5°], [18.5°,26.5°], [26.5°, 33.2°], [33.2°, 39.2°], [39.2°,45°]
- $lg(N_{\mu}) \approx [1.6, 2.4]$ of the same energy with data
- The trend of attenuation with J_{μ} similar between data and simulation

Check the muon attenuation length at 300TeV

comparison of attenuation lengths

- The same method can be used to obtain the attenuation length of the simulation of other model
- The attenuation length of simulation data mixed components is consistent with the experimental data
- The attenuation length of experiment is located between the proton and iron for both hadronic model

Attenuation length varies with E

- Attenuation length increase as the reconstruction energy $\Lambda_{\mu} = -138 + 110 * \lg(E_{rec})$ (data)
- The increase trend of attenuation similar between data and simulation $\Lambda_{\mu} = -228 + 123 * \lg(E_{rec})$ (simulation)
- Using these formula extend all result to high energy such as KASCADE energy

Comparison of attenuation length

attenuation lengths of KASCADE

attenuation lengths comparison between KASCADE and LHAASO

- KASCADE experimental data shower energies between $10^{16.3}$ and 10^{17} eV, $\Lambda_{\mu} = 1256 + 85^{+229}_{-232}$ g/cm²
- LHAASO data extended to $10^{16.5} eV$
 - expected $\Lambda_{\mu}=684+10~g/cm^2$ (data), $\Lambda_{\mu}=697+14~g/cm^2$ (simulation)
- Yellow area is KASCADE data and blue area is expected attenuation length of LHAASO data, the red point is KASCDE result and the black is our result
 - our attenuation length closed to the simulation results of KASCADE, but there is a significant deviation between the experimental results of KASCADE and LHAASO expect

Conclusions

- The attenuation length of the muon of experimental data are measured at diffirent flux cut No obvious deviation from MC
- The attenuation length increases as the energy of CRs
- Our expected results are consistent with KASCADE simulation results, but there is a significant deviation from its experimental results

Generation of simulation data:

- Primary particle: Proton, iron, He, CNO, MgAlSi, (Gaisser model γ =-2)
- High energy strong interaction model: EPOS-LHC ,QGSJETII-04
- Low energy strong interaction model: Fluka, Gheisha

重建精度%	Proton	Fe	He	CNO	MgAlSi
10TeV-100TeV	22.76	6.26	17.27	11.02	10.05
100TeV-1PeV	19.12	7.38	15.37	11.78	9.12
1PeV-10PeV	12.33	8.1	9.71	8.38	9.96

Energy reconstruction

- \succ *lgE* = *a* + *blg* ρ
- \triangleright ρ_{200} : Refers to the number density of detected electromagnetic particles 200 meters away from the shower core
- \blacktriangleright ho_{200} Satisfy NKG function , $r_m = 130.0$, r = 200 .

$$f\left(s,\frac{r}{r_m}\right) = \frac{\Gamma(4.5-s)}{\Gamma(s-0.5)\Gamma(5-2s)} \left(\frac{r}{r_m}\right)^{s-2.5} (1+\frac{r}{r_m})^{s-4.5} \qquad \rho_e(r,s,N_e) = \frac{A \cdot N_e}{r_m} f(s,\frac{r}{r_m})^{s-4.5} = \frac{1}{r_m} \left(\frac{r}{r_m}\right)^{s-4.5} = \frac{1}{r_m} \left(\frac{r}{r_m}\right)^$$

> The relationship coefficient between energy and density is $lgE = (lg\rho + 6.843)/1.04$; the energy reconstruction accuracy can be obtained

Energy reconstruction

The theta<18° of the relationship between reconstruction energy and Nu

Select the reconstruction energy as $lg(E_{rec}) = 5.5$

Model	EPOS	_LHC	QGSJETII-04		
$\lg(E_{rec}) = 5.5$	Proton	Fe	Proton	Fe	
$\lg(N_{\mu})$	1.7	2.0	1.7	2	
$\lg(J_{\mu})$	-1.3	-1.7	3.1	3.1	
Λ_{μ}	536±36	350±13	655±59	415±28	

Particle energy:100TeV-10PeV Primary particle: Proton, Fe theta: 0-45°

- Different shower cores are selected, the peak values of muon of unit detector are the same
- The detector ring measuring muons has no effect on the measurement of muons

appendix:MC

appendix:EPOS_Proton

appendix:QGS_Proton

斜率: 0.458272, 0.426743, 0.395214, 0.363686, 0.332157, 0.300628