

Searches for new physics with leptons using the ATLAS detector

TeV Particle Astrophysics 2021

Antonio Sidoti Antonio.sidoti@bo.infn.it

Istituto Nazionale Fisica Nucleare – Sezione di Bologna on behalf of the ATLAS Collaboration

26/10/2021

Beyond Standard Model Searches in ATLAS

So far, lepton flavor universality tests in b-physics sector and $(g-2)\mu$ anomalies could hint to BSM in particle physics.

Exploit ATLAS exceptional lepton identification capabilities (electrons, muons and taus)

Tau Fake estimations

Nature Phys. 17 (2021) 819

A. Sidoti

Outline

- Test of SM symmetries (indirect):
 - Lepton flavor violation in Z boson decays
 - > Measurement of $e\mu$ charge asymmetry
 - bsll contact interactions
- Direct searches of BSM heavy particles
 - TypeIII Seesaw heavy leptons
 - Heavy gauge bosons Z' and W'

Other ATLAS talks related to BSM searches:

- **\star** For Leptoquark searches \rightarrow Talk from P. Baur
- \star For resonances decaying in pairs of heavy boson \rightarrow Talk from S. Li
- ★ For LFV in Higgs boson \rightarrow Talk from K. Ran
- ★ For BSM in 3rd generation quarks \rightarrow Talk from A. Burger
- **\star** For additional scalar particles \rightarrow Talk E. Reynolds
- ★ Dark matter searches \rightarrow Talk from C. Li
- \star Searches with challenging and long lived signatures \rightarrow S. Grancagnolo

Lepton Flavor Violation Searches

- Exploit huge statistics of Z bosons produced and look for LFV in Z decays
- ▶ LFV very rare from SM (neutrino mixing) BR~10⁻⁵⁰
- Positive signal would be a clear indication of BSM physics

ATLAS-CONF-2021-042

- Signal optimization and background rejection using BDT
- Fit peak in $M(e\mu)$ invariant mass distribution
- Statistics dominated measurement

ATLAS Run1 Result: Br(Z \rightarrow eµ)<7.5 x10⁻⁷ at 95% CL

New Run2 Result: Observed (Expected) limit $Br(Z \rightarrow e\mu) < 3.04 (2.75) \times 10^{-7} at 95\% CL$

Lepton Flavor Violation searches Z \rightarrow e/ μ τ

Deep Neural Network with full kinematic information to discriminate signal from different background
 Low and High P_T categorization to optimize sensitivity

Previous best limits at LEP: Br(Z \rightarrow et)<12 x10⁻⁶ at 95% CL Br(Z \rightarrow µt)<9.8 x10⁻⁶ at 95% CL

New Run2 Results:

(marginal dependence on unpolarized and maximally polarized τ leptons hypothesis) Observed limit τ had Br(Z $\rightarrow e\tau$)<8.1 x10⁻⁶ at 95% CL Br(Z $\rightarrow \mu\tau$)<9.9 x10⁻⁶ at 95% CL Observed limit τ lep Br(Z $\rightarrow e\tau$)<7.0 x10⁻⁶ at 95% CL Br(Z $\rightarrow \mu\tau$)<7.2 x10⁻⁶ at 95% CL Observed limit Run1 + Run2 Br(Z $\rightarrow e\tau$)<5.0x10⁻⁶ at 95% CL Br(Z $\rightarrow \mu\tau$)<6.5x10⁻⁶ at 95% CL

ATLAS-CONF-2021-045

e μ asymmetry $\rho = \frac{\sigma(pp \to e^+ \mu^- + X)}{\sigma(pp \to e^- \mu^+ + X)}$

Measure the ratio

Ideally ρ_{SM} =1. Detector effects could ρ_{SM} <1 A measurement of ρ >1 \rightarrow Hint of new physics

- Events separated in independent signal regions: large MET and jet regions
- Mis-identified leptons estimated with data driven method
- In ratio many uncertainties cancel out \rightarrow Muon charge bias (trigger, reconstruction) carefully estimated and validated

A. Sidoti

bsll contact interaction

PRL 127 (2021) 141801

Direct probe of *bsll* interaction at high momentum Four categories: $e^+e^-/\mu^+\mu^-$ + 0/1 b-jets

Background: Z/γ + jets, tt/Wt/ttV, QCD

Limit interpreted with CI framework

Type III SeeSaw

Search for charged and neutral heavy leptons predicted by TypeIII Seesaw models \rightarrow motivated by small SM neutrino mass

Heavy leptons decay in leptons (v, e/μ) + SM bosons (W, Z or H)

Search in 2, 3 and 4 leptons final state and combination

Two leptons + jets

Eur. Phys. J. C 81 (2021) 218

Three, four leptons + combination with two leptons

ATLAS-CONF-2021-023

Heavy leptons in Typelll SeeSaw

Two leptons final state

Three and Four leptons final state

Statistics limited measurement

Heavy lepton mass below 910 GeV excluded at 95% CL

26/10/2021

Multilepton General Search

arXiv:2107.00404

- Exclude cross section for 3 and 4 lepton final states with additional requirements (small or large E_T^{miss} presence or not of a Z boson)
- Upper limits derived for specific models: Doubly charged Higgs and TypeIII Seesaw

26/10/2021

A. Sidoti

11/23

Non resonant dilepton search

From resonant search (Z') and non-resonant search in dilepton invariant mass distributions.

Graviton mass excluded limits for ADD models ATL-PHYS-PUB-2021-021

Non resonant search

Events/GeV

(Data-Fit)/σ 01

 10^{4}

102

^{12/23}

Search for Heavy W'

Select events with large ¹ and exactly one lepton $(e/\mu/\tau_h)$

Transverse mass M_T as the discriminant Inpterpretation as exclusion limits with SSM Sequential model

M(W')>6 TeV (e and μ) M(W')> 5 TeV (τ) @95% CL

 τ channel

26/10/2021

A. Sidoti

ATLAS-CONF-2021-025 13 / 23

Conclusions

- Searches of BSM physics with leptonic final state well established in ATLAS
- No evidence for BSM deviations
- Limits on LFV and direct searches constantly improving thanks to increased statistics and better analysis techniques
- One of the most promising sector to look for confirmation of hints of LFU violations (LHCb, Babar and Belle) and muon (g-2)

•

BackUp

Source of uncertainty	Degradation of $\mathcal{B}^{95\%CL}(Z \to e\mu)$
Limited simulated events	9.5%
Z o au au	4.7%
$Z ightarrow \mu \mu$	6.1%
All other sources	2.4%
Jet energy scale and resolution	1.2%
Pile-up	1.2%
Electron energy scale and resolution	0.8%
Lepton efficiency	0.7%
b-tagging	0.6%
Muon resolution and bias correction	0.6%

LFV Z $\rightarrow \tau e/\mu$

	Observed (expected) upper limit on $\mathcal{B}(Z \to \ell \tau)$ [×10 ⁻⁶]		
Experiment, polarization assumption	eτ	μau	
ATLAS Run 2, unpolarized τ	8.1 (8.1)	9.9 (6.3)	
ATLAS Run 2, left-handed τ	8.2 (8.6)	9.5 (6.7)	
ATLAS Run 2, right-handed τ	7.8 (7.6)	10 (5.8)	
ATLAS Run 1, unpolarized τ		17 (26)	
ATLAS Run 1+Run 2 combination, unpolarized τ		9.5 (6.1)	
LEP OPAL, unpolarized τ	9.8	17	
LEP DELPHI, unpolarized τ	22	12	

Observed (expected) upper limit on $\mathcal{B}(Z \to \ell \tau)$ [×1]			
Final state, polarization assumption	ετ	μau	
$\ell \tau_{\text{had}} \text{ Run } 1 + \text{ Run } 2$, unpolarized τ	8.1 (8.1)	9.5 (6.1)	
$\ell \tau_{\rm had}$ Run 2, left-handed τ	8.2 (8.6)	9.5 (6.7)	
$\ell \tau_{\rm had}$ Run 2, right-handed τ	7.8 (7.6)	10 (5.8)	
$\ell \tau_{\ell'}$ Run 2, unpolarized τ	7.0 (8.9)	7.2 (10)	
$\ell \tau_{\ell'}$ Run 2, left-handed τ	5.9 (7.5)	5.7 (8.5)	
$\ell \tau_{\ell'}$ Run 2, right-handed τ	8.4 (11)	9.2 (13)	
Combined $\ell \tau$ Run 1 + Run 2, unpolarized	τ 5.0 (6.0)	6.5 (5.3)	
Combined $\ell \tau$ Run 2, left-handed τ	4.5 (5.7)	5.6 (5.3)	
Combined $\ell \tau$ Run 2, right-handed τ	5.4 (6.2)	7.7 (5.3)	
26/10/2021	A. Si	doti	

eµ Asymmetry

	SR-RPV					
	$e^+\mu^-$		$e^-\mu^+$		-	
$m(\tilde{\chi}_1^0, \tilde{\mu}) = (0, 500) \text{ GeV}, \ \lambda'_{231} = 1$	191	±	19	46.	$8\pm$	3.9
$m(\tilde{\chi}_1^0, \tilde{\mu}) = (50, 250) \text{ GeV}, \lambda'_{231} = 1$	1160	\pm	88	361	\pm	92
$m(S_1) = 1000 \text{ GeV}, \lambda = 0.5$						
$m(S_1) = 1250 \text{ GeV}, \lambda = 1.0$						
Data	489	\pm	22	510	\pm	23
Total SM expectation	503	\pm	48	510	\pm	26
• part due to real leptons	473	\pm	47	479	\pm	24
\bullet part due to fake leptons	29.4	$4\pm$	8.2	30.	$3\pm$	8.3

	SR-LQ			
	$e^+\mu^-$	$e^{-}\mu^{+}$		
$m(\tilde{\chi}_1^0, \tilde{\mu}) = (0, 500) \text{ GeV}, \lambda'_{231} = 1$				
$m(\tilde{\chi}_1^0, \tilde{\mu}) = (50, 250) \text{ GeV}, \lambda'_{231} = 1$				
$m(S_1) = 1000 \text{ GeV}, \lambda = 0.5$	157 ± 26	10.6 ± 2.3		
$m(S_1) = 1250 \text{ GeV}, \ \lambda = 1.0$	244 ± 38	15.9 ± 3.4		
Data	60.9 ± 7.8	69.1 ± 8.3		
Total SM expectation	61 ± 13	69 ± 12		
\bullet part due to real leptons	46 ± 12	47 ± 11		
• part due to fake leptons	14.1 ± 4.8	22.1 ± 6.6		

26/10/2021

A. Sidoti

bsll

Type3 SeeSaw

Dilepton search

26/10/2021

$W' \rightarrow \tau v$

