

Searches for leptoquarks with the ATLAS detector

Patrick Bauer for the ATLAS Collaboration

Physikalisches Institut, Universität Bonn

26th October 2021

Why leptoquarks ?

- 3 gen. mirrored lepton \leftrightarrow quark
- Charge: $q_{lep} \leftrightarrow n_{color} \times q_{quark}$
- leptoquarks (LQ) show up in many possible GUT scenarios.

LQ models:

	Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \& R_{D^{(*)}}$
Vector Scalars	$S_1 = (3, 1)_{-1/3}$	×	1	×
	$R_2 = (3, 2)_{7/6}$	×	1	×
	$\widetilde{R}_2 = (3, 2)_{1/6}$	×	×	×
	$S_3 = (3, 3)_{-1/3}$	<	×	×
	$U_1 = (3, 1)_{2/3}$	 Image: A second s	 Image: A second s	<
	$U_3 = (3, 3)_{2/3}$	 Image: A second s	×	×

Angelescu, Becirevic, DAF, Sumensari [1808.08179]

- LQ have color+lepton number
- scalar and vector particles

Observed anomalies

 $R_{D^{(*)}}$ - 3σ discrepancy to SM

•
$$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu^{-}\mu^{+})}{BR(B \to Ke^{-}e^{+})}$$

• $R_{D^{(*)}} = \frac{BR(B \to D^{(*)}\tau^{-}\nu_{\tau})}{BR(B \to D^{(*)}\ell\nu)}$
 μ magnetic Moment
• μ magnetic Moment
•

U1 vector LQ

- $U_1 LQ$ explains $D^{(*)} + K^{(*)}$ simultaneously
- Much larger x-section compared to kin. suppressed scalar LQs $\int \frac{1}{2\pi} = -i\sigma (1 r) U^{\dagger} T^{2} L C^{\mu\nu}$

$$\mathcal{L}_{\mathrm{U}_{1}} \supset -\mathit{ig_{s}}\left(1-\kappa
ight) U_{1\mu}^{!} T^{\mathsf{a}} U_{1
u} G^{\mathsf{a}\mu
u}$$

For the U₁ coupling to color can be suppressed $(\kappa) \Rightarrow 2$ scenarios :

- Nominal coupling to color ($\kappa = 0$) Yang Mills (YM)
- Minimal coupling ($\kappa = 1$): coupling to gluon only via covariant derivative

Search for LQ's at ATLAS

ATLAS search strategy

- Investigation of pair produced (PP) leptoquarks
- Process analogous to other PP BSM particles (e.g. SUSY)
 - \Rightarrow Allows reinterpretation of existing analyses complementary to dedicated searches
- LQ_d: $q = -\frac{1}{3}e$, LQ_u: $q = +\frac{2}{3}e$
- Exclusion contours : Leptoquarkmass (m(LQ)) against branching fraction to final state (B)

$LQLQ \rightarrow jet \ lepton \ + \ jet \ lepton$

▶ JHEP10 (2020) 112

Strategy

- Select $e^+e^- \ e \ / \ \mu^+\mu^+ \ + \ge 2$ jets
- 7 event categories based on # of b-/c-tagged jets
- LQ candidates: ℓ -j closest in $m_{\ell j}$
- Main bkg. DY and $t\overline{t}$ taken from MC + CR

• Analysis explored 6s cases: 3 quark (light/charm/bottom) and 2 lepton flavor (e,μ)

- Exclusion limits
 - for $\mathcal{B}(\mathsf{LQ} o \ell^{\pm} \, q)$ =1: m(LQ) > 1.8 TeV (el.) m(LQ) > 1.7 TeV (μ)
 - for $\mathcal{B}(\mathsf{LQ}
 ightarrow \ell^{\pm} q) \geq 0.1$: m(LQ) $> 0.8\,\mathsf{TeV}$ (el. and μ)

• First limits on mixed decays employing dedicated *c*- and *b*-jet id. algorithms

Improves (95% CL.) exlusion limit on m_{LQ} by 400 GeV over earlier results

LQLQ $\rightarrow t\ell t\ell$

Strategy

- Select $e^+ e^- / \mu^+ \mu^+ + \text{large-R jets}^1$
- BDT based on 29/32 (e/ μ) kinetic observables ۲
- Obs. in rest-frames of intermediate particles (LQ, t, Z) using jigsaw technique

5 = 13 TeV 139 fb

 $LQLQ \rightarrow t_{had} \mu t_{had} \mu$

1Cp

Post-Fit m .= 1.5 TeV BDT

Data

Z+jets Others

/// Uncertainty

---- LQ 1.5 TeV

ti.

vents ATI 45

Data/Bk

$LQLQ \rightarrow t au t au$

Strategy

- Events w. at least 1ℓ , 1 *b*-jet and 2 jets
- 7 SR: $(1\ell/2\ell \text{ OS}/2\ell/2\ell \text{ SS}/3\ell)$ split into $1\tau/2\tau$ regions
- 15 CR for *t̄tW* & fake lepton normalization

Observed limits at 95 % CL

- m(LQ) > 1.43 TeV for $\mathcal{B}(LQ \rightarrow t\tau) = 1.0$ (CMS : 1.12 TeV EXO-21-002 [5])
- m(LQ) > 1.22 TeV for $\mathcal{B}(LQ \rightarrow t au) = 0.5$

$LQLQ \rightarrow t\nu t\nu$

Strategy

- Optimized for pair produced top squarks decaying to $t\bar{t} + \mathsf{MET}$
- Events w. MET >250 GeV at least 4 jets & 2 b-jets
- 2 SRs defined via MET-significance (S)> 25 and $14 + m_T^{b,min} > 200 \text{ GeV}$
- Main bkg. $Z \rightarrow \nu \nu + \text{ jets from CR}$

$\textbf{LQLQ} \rightarrow \textbf{b}\nu ~\textbf{b}\nu$

Strategy

- Analysis optimized for PP of bottom squarks decaying to b-quarks + MET
- $\bullet~$ Events w. MET $>\!250\,\text{GeV}$ at least 2 to 4 jets incl. 2 b-jets
- reject main bg. t \overline{t} by $m_{CT}^{-1} > 250 \text{ GeV} (m_{CT}(t\overline{t}) \le 135 \text{ GeV})$
- Z bg. normalization taken from CR

LQLQ ightarrow b u t au / b au t u

▶ arXiv:2108.07665

Strategy

- Analysis optimized for stop pair decaying to staus and scalar LQ
- Events with at least 1 $\tau_{\it had},$ 2b-jet and MET
- SR based on cuts on MET, $p_{\rm T}(\tau)$, $m_{\rm T}(\tau)$, $m_{\rm T}(t)$, $m_{\rm T}(b_1)$, $m_{\rm T}(b_2)$

Events

ATLAS

S=13 TeV, 139 fb⁻¹

• BG norm. for $t\bar{t}$ & single top from CR

Max. Observed limits at 95 % CL.

m(LQ) < 1.25 TeV</p>

₩Tota

tt (2 real t) tt (1 real t Single top V+jets

MOth

13/18

$LQ_3^{\nu}LQ_3^{\nu} ightarrow b au$ tu: vector LQ

▶ arXiv:2108.07665

Yang-Mills-coupling:

Minimal coupling:

- First result of ATLAS for vector LQ
- Exclusion up to:
 - $m(LQ_3^{\nu}) > 1.5 \text{ TeV Min. coupling}$
 - $m(LQ_3^{\nu}) > 1.8 \text{ TeV}$ Yang-Mills coupling
 - CMS result Phys.Lett.B 819 (2021) 136446:
 - 1.34 TeV-1.41 TeV Min. coupling (SP+PP)
 - 1.69 TeV-1.73 TeV Yang-Mills (SP+PP)

► ATL-PHYS-PUB-2021-017

1 pp → LQ^u₃LQ^u₃, all contours at 95% confidence leve pp → LQ3LQ3, all contours at 95% confidence level June 2021 June 2021 Ē £ ATLAS Preliminary ATLAS Preliminary î 0.9 †. 0.9 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ⊛ (LQ's . ⊛(LQ 0.8 0.8 - observed 0.7E observed 0.7 ······ expected ······ expected 0.6 0.6E - trtr 0.5F b ttv 0.5 [arXiv:2101.11582] [ATLAS-CONF-2021-008] - trby 0.4E 0.4 [ATLAS-CONF-2021-008] stop-0 sbottom-0 0.3 [EPJC 80 (2020) 737] 0.3E [arXiv:2101.12527] 0.2E 0.2 ATLAS, 36.1 fb⁻¹ (obs.) ATLAS, 36.1 fb⁻¹ (obs.) 0.1E 0. [JHEP 06 (2019) 144] [JHEP 06 (2019) 144] يتا 0 ٥t 1000 1200 1400 1600 1800 2000 2200 2400 1000 1200 1400 1600 1800 2000 2200 2400 600 800 600 800 m(LQ^u₃)[GeV] m(LQ3)[GeV] $1_{L}^{pp \rightarrow LQ_{mix}^{u}LQ_{mix}^{u}}$, all contours at 95% confidence level June 2021 pp → LQ^d_{mi}LQ^d_{min}, all contours at 95% confidence level June 2021 ~ * q ATLAS Preliminary ATLAS Preliminary ↑ 0.9 0.9 î -18.0 ⊫ (CO^{mi×} 8 - " (LO^d % $\sqrt{s} = 13 \text{ TeV}. 139 \text{ fb}$ $\sqrt{s} = 13 \text{ TeV}. 139 \text{ fb}^{-1}$ observed observed ····· expected ····· expected 0.6 0.6 0.5E 0.5 0.4F bebe 0.4 tete [JHEP 10 (2020) 112] [EPJC 81 (2021) 313] 0.3 0.3 0.2 bµbµ 0.2 tµtµ [EPJC 81 (2021) 313] 0.1 [JHEP 10 (2020) 112] 0. 1200 1400 1600 1800 2000 2200 2400 800 1000 1200 1400 1600 1800 2000 2200 2400 m(LQ^u_{mix})[GeV] m(LQ^d_{mix})[GeV]

UNIVERSITÄT BONN

Summary plots:

LQ single production

Strategy

- Data driven analysis of $\rho = \frac{N(e^+\mu^-)}{N(e^-\mu^+)} e/\mu$ asymmetry measurement
- Events with exactly 1 μ and 1 e (oposite charge)
- Main discriminating variable: $H_P = |\vec{p_T}^e| + |\vec{p_T}^\mu| + |\vec{p_T}^{jet_{lead}}|$
- MET significance < 6

with coupling strength $g_{eu} = g_{\mu c} > 0.6$

UNIVERSITÄT BOI

- ATLAS published wide range of searches for LQ pair production using 140 fb⁻¹ recorded during Run 2 at LHC
- Further full Run 2 results are expected
- LHC Run 3 will start next year and HL LHC will follow: ATLAS is looking forward to significantly more data to be analyzed (\approx 20 times more data expected)

Y. S. Amhis et al. "Averages of *b*-hadron, *c*-hadron, and τ -lepton properties as of 2018".

In: Eur. Phys. J. C81 (2021). updated results and plots available at https://hflav.web.cern.ch/, p. 226. DOI: 10.1140/epjc/s10052-020-8156-7. arXiv: 1909.12524 [hep-ex].

R. Aaij et al. "Test of lepton universality in beauty-quark decays". In: (Mar. 2021). arXiv: 2103.11769 [hep-ex].

B. Abi et al. "Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm".
 In: Phys. Rev. Lett. 126 (14 Apr. 2021), p. 141801. DOI: 10.1103/PhysRevLett.126.141801.
 URL: https://link.aps.org/doi/10.1103/PhysRevLett.126.141801.

C. Cornella, J. Fuentes-Martín and G. Isidori.

"Revisiting the vector leptoquark explanation of the B-physics anomalies". In: Journal of High Energy Physics 2019.7 (July 2019), p. 168. ISSN: 1029-8479. DOI: 10.1007/JHEP07(2019)168. URL: https://doi.org/10.1007/JHEP07(2019)168.

Inclusive nonresonant multilepton probes of new phenomena at $\sqrt{s} = 13$ TeV. Tech. rep. Geneva: CERN, 2021. URL: https://cds.cern.ch/record/2779120.

