Astrophysical ν_{τ} with IceCube

TeVPA 2021 Chengdu, China

> Doug Cowen Penn State

The IceCube+DeepCore Detector

- IceCube built in 2010 to map the ν sky at $E_{\nu} \sim 1~{\rm TeV}$
 - Find astrophysical v
 - Find astrophysical v sources
 - Help solve mystery of UHECR
- Enhanced with DeepCore
 - more densely instrumented region for DM and atm. ν osc.

Neutrinos in IceCube: Sources

Atmospheric tau neutrinos

- cosmic rays (mainly protons) interact in the earth's atmosphere
- creating ν_{μ} that oscillate $\rightarrow \nu_{\tau}$
- IceCube threshold $E_{\nu} \sim 5$ GeV, $E_{\nu}^{\text{atm.}} < \sim 10$ TeV; $E_{\nu} \approx 10^{9-12}$ eV

Astrophysical high energy neutrinos

- created in cosmic accelerators, e.g., in particle jets created by black holes
- Evident at $E_{\nu} > \sim 10 \text{ TeV}$ in IceCube
 - IceCube has seen PeV-scale (10^{15} eV) ν 's

Neutrinos in IceCube: Sources

- Atmospheric tau neutrinos
 - cosmic rays (mainly protons) interact in the earth's atmosphere
 - creating ν_{μ} that oscillate $\rightarrow \nu_{\tau}$
 - IceCube threshold $E_{\nu} \sim 5$ GeV, $E_{\nu}^{\text{atm.}} < \sim 10$ TeV; $E_{\nu} \approx 10^{9-12}$ eV

- Astrophysical high energy neutrinos
 - created in cosmic accelerators, e.g., in particle jets created by black holes
 - Evident at $E_{\nu} > \sim 10 \,\, {\rm TeV}$ in IceCube

• IceCube has seen PeV-scale (10^{15} eV) ν 's

At higher energies, neutrino flavors can be distinguished:

Doug Cowen/IceCube

Astrophysical $\nu: E_{\nu} > \sim 10 \text{ TeV}$

- ν mainly from π^{\pm} decay in astrophysical beamdumps
- Needle in a haystack!
 - 10^{11} atmospheric μ /yr,
 - 10^5 atmospheric ν /yr, and
 - 10^1 astrophysical ν /yr

- Beat down atm. μ using part of detector as veto (see below)
- Separate atm. ν from astrophys. ν using E_{ν} , spatiotemporal concidence, and/or event topology

Astrophysical $\nu: E_{\nu} > \sim 10 \text{ TeV}$

- ν mainly from π^{\pm} decay in astrophyical beamdumps
- Needle in a haystack!
 - 10^{11} atmospheric μ /yr,
 - 10^5 atmospheric ν /yr, and
 - 10^1 astrophysical $\nu/{
 m yr}$

- Beat down atm. μ using part of detector as veto (see below)
- Separate atm. ν from astrophys. ν using E_{ν} , spatiotemporal concidence, and/or event topology

Astrophysical ν_{τ}

Measurements to date:

- Search for 1-2 clean "double pulse" waveforms and/or a "two-cascade" signature
- ~2 ν_{τ} candidates found:
 - •Assuming
 - 1:1:1 flavor ratio at earth
 - $\Phi(\nu) \propto E_{\nu}^{-2.87}$ (IceCube msmt.)

expect 1.5 signal and 0.8 background in 7.5 yrs

• Notes:

- Estimate that 98% and 76% of events like the two seen are ν_{τ} -induced
- Index of -2.87 softest measured by IceCube

Astrophysical ν_{τ}

- Joint flavor analysis:
 - First time best fit point with $(\Phi_{\nu_e}, \Phi_{\nu_{\mu}}, \underline{\text{and}} \ \Phi_{\nu_{\tau}}) \neq 0$
 - \bullet First probe of ν flavor oscillations over cosmic baselines & at the TeV scale
 - Rules out no- $u_{ au}^{\mathrm{astro.}}$ hypothesis at 2.8σ

"Flavor Triangle"

Next Steps: Upcoming $\nu_{\tau}^{\mathrm{astro}}$ Measurement

• Waiting for a clean "double bang" would require much patience:

 $E_{\nu_{\tau}} > \sim \text{PeV}$ are rare.

- Waiting for a clean "double bang" would require much patience: $E_{\nu_{\tau}} > \sim \text{PeV}$ are rare.
- Instead use more plentiful "double pulse" ν_{τ} events at lower threshold energies: $E_{\nu_{\tau}} > \sim 50 \text{ TeV}$
- Follow in footsteps of previous analyses, but look for DP signature on 3 <u>strings</u> (180 vs. 1–2 modules)
 - Render each string into a 2-D image
 - Identify DP signal(s) using deep convolutional neural networks

Qs: string charge

Simulated ~200 TeV ν_{τ} .

Data from most illuminated string and its two nearest neighbors:

- Preliminarily predict $\sim 4.8 \pm 0.1 \nu_{\tau}^{CC}$ on background of $\sim 0.4 \pm 0.06$ events (HESE flux; stat. errors only)
 - •~10 years livetime
 - background dominated by $\nu_{e,\mu}^{\rm astro}$ and prompt $\nu^{\rm atm}$
 - systematic effects appear to have minimal impact
- With ~5 events, can rule out $no-\nu_{\tau}^{astro}$ at high confidence
 - •~50% chance to reach 5σ
- May be able to better constrain astrophysical neutrino "flavor triangle"
- Also: Exploring supra-PeV ν_{τ} producing kms-long τ tracks
 - Potentially distinguishable from μ tracks (smoother: $m_{\tau} \gg m_{\mu}$)

After opening the box, here's what the triangle plot might look like for two selected values of events seen:

Blue lines from IceCube Collaboration, Phys. Rev. D 99, 032004 Orange lines lack full systematic treatment.

- Preliminarily predict $\sim 4.8 \pm 0.1 \nu_{\tau}^{CC}$ on background of $\sim 0.4 \pm 0.06$ events (HESE flux; stat. errors only)
 - •~10 years livetime
 - background dominated by $\nu_{e,\mu}^{\rm astro}$ and prompt $\nu^{\rm atm}$
 - systematic effects appear to have minimal impact
- With ~5 events, can rule out $no-\nu_{\tau}^{astro}$ at high confidence
 - •~50% chance to reach 5σ
- May be able to better constrain astrophysical neutrino "flavor triangle"
- Also: Exploring supra-PeV ν_{τ} producing kms-long τ tracks
 - Potentially distinguishable from μ tracks (smoother: $m_{\tau} \gg m_{\mu}$)

Conclusions

- IceCube is unique in its broad sensitivity to ν_{τ} (and τ)
 - •~6 orders of magnitude in $E_{\nu_{\tau}}$ (and E_{τ}): 10 GeV \leftrightarrow 10 PeV
 - •~20 orders of magnitude in $L_{\nu_{\tau}}$: ~ $R_{\text{earth}} \leftrightarrow ~ 4 \times 10^9 \text{ ly}$
- IceCube makes both exclusive $\nu_{\tau}^{\text{astro}}$ and inclusive ν_{τ}^{atm} measurements
 - Exclusive: $\nu_{\tau}^{\text{astro}} \rightarrow \tau \rightarrow \text{double pulse}$
 - \bullet Likely to soon have world's largest (exclusive) ν_{τ} appearance sample
 - $\nu_{\tau}^{\rm astro}$ are powerful probes of
 - \bullet ultra-long baseline, ultra-high energy ν oscillations
 - \bullet astrophysical accelerator ν production scenarios
 - new physics
 - Very early days for $u_{ au}^{\text{astro}}$...but maturing rapidly!

E, / TeV

10-1

10-1

10³ E_v / TeV

10

astrophysical ν_{μ} CC

10² E_v / TeV

total prompt atmosphe

E-1 Tel

10-

10-1

----- preliminary cuts: 46.66 ± 0.49

preliminary cuts: 71.95 ± 0.21

- signal cuts: 0.11 ± 0.00

signal cuts: 0.08 ± 0.02

IceCube Prospects

nination of the neutrino mass ordering

ed measurements of neutrino oscillations

IceCube: Neutrino Particle Physics

- Only detector in the world that can perform atmospheric v oscillation studies at high energies
- Megaton-scale detector confers
 enormous statistical power

 ν_{μ} "disappearance" results competitive with dedicated accelerator-based ν experiments

 v_{τ} "appearance" results currently competitive and soon will be world-leading; tests unitarity

8-Year DeepCore ν_{μ} Disappearance

