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Introduction



Observation

Hints for
strongly
reduced
diffusion
coefficient
observed near
SNRs [Fujita et
al. 2009; Gabici
et al. 2010]
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[Aharonian et al. 2008]
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Source in the ISM

interstellar magnetic field is coherent on scales of 10-50pc
particles diffuse mainly parallel to magnetic field

⇒ On these scales particles fill a flux tube and the problem can be regarded
1D

Flux given by: φCR(E > E0) = nCR(E > E0)vD = LCR

2πR2
s ΛE0

In this configuration CRs will excite a resonant streaming instability,
hindering their escape
Less efficient for high-energy particles [Nava et al. 2016, D’Angelo et al.
2016]
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Formation of CR bubbles



Bell instability

Did we miss something?

⇒ non-resonant streaming instability [Bell 2004]
large growth rate γmax

on scale k−1 � rL ⇒ does not affect the CR current at first
until saturation at ∼ 5− 10γ−1

max , then cascades to larger scales

D =
1
3

vrL
P(kres)

∼ B2
0

δB2 → affects transport and enables strong particle

scattering
Condition:

φCR(E > E0)

c
E0 �

B2
0

4π

This instability is often excited at SNR shocks
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Consequences

Bell condition for SNR
4πφCRE0

cB2
0

≈ 100 , γ−1
max ≈ 1.1(E/2.5TeV) yr

Easy to see: Flux at SNR shock = flux of escaping particles, the condition
holds at the shock ⇒ it holds in the flux tube

mean free path λ = 3D
v ≈ 1 · E 1/2

GeV pc ⇒ high-energy CR escape ballistically
Flux φCR(E > E0) = nCR(E > E0)vD conserved, but vD decreases as particles
start to transition to diffusive behavior
⇒ PCR � Pgas → tube will expand in transverse direction, breaks 1D
geometry

[Schroer et al. 2021, ApJL]
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Hybrid PIC Simulation Setup

Hybrid
particle-in-cell
simulation with
dHybridR
Solve Maxwell
equations and
equations of motion
for macroparticles
Electromagnetic
fields due to
moving particles
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Evolution in 2D
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[Schroer et al. 2021, ApJL]
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Power Spectrum

Fastest growing
mode around
theoretical kmax

Saturation,
cascading to
larger scales
and formation
of bubble all
coincide with
∼ 10γ−1

max ≈
100Ω−1
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Evolution in 3D

[Schroer et al. PoS(ICRC2021)]
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Implications

Possible γ−ray morphology
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⇒ With η = 1 and observed reduction of D this gives ∼ 10%

[Schroer et al. 2021, in preparation]
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Conclusion



Conclusion

new insights about escape of CRs from their sources:
current of escaping particles generate a non-resonant instability which slows
down their escape
leads to formation of CR bubbles around sources with reduced diffusivity
Important implications:

enhanced γ-ray emission from circumsource region
accumulated grammage of trapped CRs might be significant for
secondary-to-primary ratios
electrons get trapped as well so that energy losses become important
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