

GRAN SASSO SCIENCE INSTITUTE

Explaining low diffusivity and CR bubbles around SNRs

Benedikt Schroer

Oreste Pezzi, Damiano Caprioli, Colby Haggerty, Pasquale Blasi

October 27, 2021

Outline

Introduction

Formation of CR bubbles

Benedikt Schroer (GSSI)

Introduction

Observation

 Hints for strongly reduced diffusion coefficient observed near SNRs [Fujita et al. 2009; Gabici et al. 2010]

[Aharonian et al. 2008]

Benedikt Schroer (GSSI)

October 27, 2021

GS

Source in the ISM

- interstellar magnetic field is coherent on scales of 10-50pc
- particles diffuse mainly parallel to magnetic field

 $\bullet \Rightarrow$ On these scales particles fill a flux tube and the problem can be regarded 1D

Source in the ISM

- interstellar magnetic field is coherent on scales of 10-50pc
- particles diffuse mainly parallel to magnetic field

- $\bullet \Rightarrow$ On these scales particles fill a flux tube and the problem can be regarded 1D
- Flux given by: $\phi_{CR}(E > E_0) = n_{CR}(E > E_0)v_D = \frac{L_{CR}}{2\pi R_s^2 \Lambda E_0}$
- In this configuration CRs will excite a resonant streaming instability, hindering their escape
- Less efficient for high-energy particles [Nava et al. 2016, D'Angelo et al. 2016]

Formation of CR bubbles

Bell instability

Did we miss something?

Bell instability

Did we miss something? \Rightarrow non-resonant streaming instability [Bell 2004]

- large growth rate γ_{max}
- on scale $k^{-1} \ll r_L \Rightarrow$ does not affect the CR current at first
- ullet until saturation at $\sim 5-10\gamma_{max}^{-1}$, then cascades to larger scales

Bell instability

Did we miss something? \Rightarrow non-resonant streaming instability [Bell 2004]

- large growth rate γ_{max}
- on scale $k^{-1} \ll r_L \Rightarrow$ does not affect the CR current at first
- ullet until saturation at $\sim 5-10\gamma_{max}^{-1}$, then cascades to larger scales

$$D=rac{1}{3}rac{ extsf{vr}_L}{P(k_{ extsf{res}})}\sim rac{B_0^2}{\delta B^2}$$

ightarrow affects transport and enables strong particle

scattering

Condition:

$$\frac{\phi_{CR}(E>E_0)}{c}E_0\gg\frac{B_0^2}{4\pi}$$

• This instability is often excited at SNR shocks

Consequences

- Bell condition for SNR $\frac{4\pi\phi_{CR}E_0}{cB_0^2} \approx 100$, $\gamma_{max}^{-1} \approx 1.1(E/2.5TeV)$ yr • Easy to see: Flux at SNR shock = flux of escaping particles, the condition
 - holds at the shock \Rightarrow it holds in the flux tube

[Schroer et al. 2021, ApJL]

Benedikt Schroer (GSSI)

Consequences

- Bell condition for SNR $\frac{4\pi\phi_{CR}E_0}{cB_0^2}\approx 100$, $\gamma_{max}^{-1}\approx 1.1$ (E/2.5TeV) yr
- Easy to see: Flux at SNR shock = flux of escaping particles, the condition holds at the shock \Rightarrow it holds in the flux tube
- mean free path $\lambda = \frac{3D}{v} \approx 1 \cdot E_{\text{GeV}}^{1/2} \, \text{pc} \Rightarrow$ high-energy CR escape ballistically
- Flux $\phi_{CR}(E > E_0) = n_{CR}(E > E_0)v_D$ conserved, but v_D decreases as particles start to transition to diffusive behavior
- $\Rightarrow P_{CR} \gg P_{gas} \rightarrow$ tube will expand in transverse direction, breaks 1D geometry

- Hybrid particle-in-cell simulation with dHybridR
- Solve Maxwell equations and equations of motion for macroparticles
- Electromagnetic fields due to moving particles

Evolution in 2D

Benedikt Schroer (GSSI)

October 27, 2021

GS

8 / 12

Power Spectrum

- Fastest growing mode around theoretical k_{max}
- Saturation, cascading to larger scales and formation of bubble all coincide with $\sim 10\gamma_{max}^{-1} \approx$ $100\Omega_{ci}^{-1}$

GS

/ 12

Evolution in 3D

Implications

• Possible γ -ray morphology

[Schroer et al. 2021, in preparation]

Benedikt Schroer (GSSI)

TeVPA 2021

GS

11 / 12

Implications

• Possible $\gamma-ray$ morphology

- Strong particle trapping influences the grammage accumulated by the particles
- Strongly dependent on achieved suppression of diffusion coefficient ξ and the gas density inside the bubble w.r.t. the ISM density η

$$\frac{X_{bubble}}{X_{Galactic}}\approx\frac{3\times10^{-1}\eta}{(\xi/10^{-2})}\left(\frac{L}{50pc}\right)^2$$

• \Rightarrow With $\eta = 1$ and observed reduction of D this gives $\sim 10\%$

[Schroer et al. 2021, in preparation]

Benedikt Schroer (GSSI)

TeVPA 2021

GS

Conclusion

new insights about escape of CRs from their sources:

- current of escaping particles generate a non-resonant instability which slows down their escape
- leads to formation of CR bubbles around sources with reduced diffusivity
- Important implications:
 - enhanced γ -ray emission from circumsource region
 - accumulated grammage of trapped CRs might be significant for secondary-to-primary ratios
 - electrons get trapped as well so that energy losses become important