



2021 TEV Particle Astrophysics Conference

# Measurements of the cosmic ray proton and helium spectra with the DAMPE experiment

### Yue, Chuan Purple Mountain Observatory, CAS (on behalf of the DAMPE Collaboration)

2021 TeV Particle Astrophysics Conference Chengdu, China 2021.10.26



### **The DArk Matter Particle Explorer**



DAMPE is a satellite-borne particle detector proposed in the framework of the Strategic Pioneer Program on Space Science, promoted by the Chinese Academy of Sciences (CAS).





#### · CHINA

- Purple Mountain Observatory, CAS
- University of Science and Technology of China
- Institute of High Energy Physics, CAS
- Institute of Modern Physics, CAS
- National Space Science Center, CAS

• ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento
- INFN LNGS and Gran Sasso Science Institute

• SWITZERLAND

– University of Geneva



### The DAMPE detector





#### Main Scientific Goals:

- Dark Matter Indirected Detection
- Cosmic-Ray Origin and Acceleration
- High Energy Gamma-ray Astronomy
- Charge measurement (dE/dx in PSD, STK)
- Gamma-ray converting and tracking (STK)
- Precise energy measurement (BGO ECAL)
- Hadron rejection (BGO and Neutron Detector)

(Chang et al. Astropart. Phys. 2017, 95, 6-24)



### Introduction







### Data sample



#### Proton:

2016/01/01-2018/06/30 (30 month) 5.98×10^7s ~76% of orbit time

Helium: 2016/01/01-2020/06/30 (54 month) 1.08×10^8s ~76% of orbit time



#### **Dead Time**

Instrumental dead time (~17.2% of O.T.) On-orbit calibration (~1.7% of O.T.) South Atlantic Anomaly (~4.9% o O.T.) X Solor Flare in Sep. 2017





**Pre-selection** 



#### **Target - Good reco events**

★ South Atlantic Anomaly (SAA) events exclusion

☆High Energy Trigger (HET) generation

#### ☆STK track optimisation

p: NhitsXY>=4 && Chi2ndof<25 && Maximum total signal of tack He: NhitsXY>=4 && Chi2ndof<25 && Maximum total signal of tack  $\triangle$  diff<25 mm between track and c.o.g. of first 4 BGO layers

★ Fiducial cut: STK track crossing PSD and BGO



#### Orbit Proton (BGO-Energy: 1.2 TeV)



#### Orbit Helium (BGO-Energy: 1.8 TeV)





### HE trigger efficiency

Unbias Trigger (G0) I High Energy Trigger (G3)
 MIPs Trigger (G1&G2) Low Energy Trigger (G4)
 High-Energy (G3) trigger efficiency can be obtained by applying all other proton selections ("N-1") to unbias (G0) sample







### **STK track efficiency**



Selecting a "pure" proton (helium) sample by applying BGO shower-axis based proton (helium) selections ("N-1") to estimate STK track reconstruction efficiency.





Systematic uncertainty due to STK-track: ~3.5% (proton), ~0.5% (Helium)









### **Charge selection**









### **Charge selection**



#### Proton selection:

$$0.6 + 0.05 \cdot \log \frac{E_{dep}}{10 GeV} < Z_{PSD} < 1.8 + 0.002 \cdot (\log \frac{E_{dep}}{10 GeV})^4$$

#### Helium selection:

$$1.85 + 0.02 \cdot \log \frac{E_{dep}}{10 GeV} < Z_{PSD,Y(X)} < 2.8 + 0.007 \cdot (\log \frac{E_{dep}}{10 GeV})^4$$





### Contamination



Proton selection:

$$0.6 + 0.05 \cdot \log \frac{E_{dep}}{10 GeV} < Z_{PSD} < 1.8 + 0.002 \cdot (\log \frac{E_{dep}}{10 GeV})^4$$

Helium selection:

$$1.85 + 0.02 \cdot \log \frac{E_{dep}}{10 GeV} < Z_{PSD,Y(X)} < 2.8 + 0.007 \cdot (\log \frac{E_{dep}}{10 GeV})^4$$







The limited thickness of the DAMPE calorimeter (~ 1.62 nuclear interaction lengths) significantly affects the energy response of hadronic particles. The energy resolution for proton is found to be about 25%-35% for incident energies from 100 GeV to 10 TeV. An unfolding procedure to reconstruct the incident energy distribution is thus necessary.

**Iterative Bayesian Unfolding Method** [Giulio D'Agostini, NIM A362(1995), 487]

$$N_i = \sum_{j=1}^n \alpha_{ij} M_j (1 - \beta_j)$$
$$\alpha_{ij} = \frac{P(E_{d,j}|E_{0,i})\hat{N}_i}{\epsilon_i \sum_{i=1}^n P(E_{d,j}|E_{0,i})\hat{N}_i}$$

 $N_i$ : Unfolded event number  $M_j$ : Measured event number  $\beta_j$ : Background  $P(E_{d,j}|E_{0,i})$ : Response Matrix (MC)  $\hat{N}_i$ : Prior (E<sup>-2.7</sup>)





Differential flux in the i-th primay energy bin:

$$\Phi(E_i, E_i + \Delta E_i) = \frac{\Delta N_i}{\Delta E_i A_{eff,i} \Delta T}$$

 $\Delta N_i$  : number of detected incident particle in the i-th primary energy bin of width  $E_i$ 

 $\Delta T$ : total livetime

 $A_{eff,i}$ : effective acceptance of the DAMPE detector as a function of the primary energy for the incoming particle at a given *i*-th bin of incident energy

$$A_{eff,i} = A_{gen} \times \frac{N_{pass,i}}{N_{gen,i}}$$

 $A_{gen}$ : geometrical factor of the particle source in MC simulations

 $N_{gen,i}$  : total number of generated events in the i-th primary energy bin

 $N_{pass,i}$ : number of events selected by the the analysis, in a given *i*-th primary energy bin





### **Proton spectrum of DAMPE**





The DAMPE measurement confirms the spectral hardening at a few hundreds of GeVs found by previous experiments, and more importantly, it reveals a spectral softening feature at ~14 TeV.







The DAMPE measurement confirms the spectral hardening at TeV-energies found by previous experiments, and more importantly, it reveals a spectral softening feature at a few decades of TeVs.





#### Independent analysis of p+He spectrum in the collaboration

Very low contamination + Very large statistics ==> High upper limit of measurement

The p+He spectrum shows a spectral hardening at ~ 600 GeV and a softening at ~ 25 TeV



The extension of the p+He spectrum to higher energies (~500 TeV) is ongoing

DIRECT MEASUREMENTS

#### INDIRECT MEASUREMENTS



### **Spectral fitting**







 $E_b = 13.6^{+4.1}_{-4.8} TeV$   $\gamma = 2.60 \pm 0.01$   $\Delta \gamma = -0.25 \pm 0.07$ s = 5 (fixed)

Significance of softening:  $\sim 4.7\sigma$ 

$$E_b = 34.4^{+6.7}_{-9.8} TeV$$
  

$$\gamma = 2.41 \pm 0.02$$
  

$$\Delta \gamma = -0.51^{+0.18}_{-0.20}$$
  

$$s = 5 \text{ (fixed)}$$

Significance of softening: ~4.3\sigma



Discussion



- \* The spectra of CR proton and helium measured by DAMPE show a very similar softening feature at tens of TeVs.
- \* The softening energies are well consistent with a dependence on particle charge, although a dependence on particle mass can not be ruled out yet.
- \* The results implicate a Z-dependent spectral break (e.g. "knee") in CR nuclei, which is likely an imprint of a nearby cosmic ray source.



- Since launch on Dec. 17th, 2015, DAMPE("Wukong") has been operated stably for almost six years
- The analyses of CR proton spectrum in [40GeV, 100TeV] and CR helium spectrum in [70GeV, 80TeV] with DAMPE experiment are presented.
- For the first time in space, DAMPE measures the proton and helium spectra individually in a wide energy range from tens of GeV to ~100TeV with a single experiment.
- The DAMPE measurements reveal a similar spectral softening feature in proton spectrum (Eb~13.6TeV) and helium spectrum(Eb~34TeV) with a very high significance.
- More results of nuclei spectra from DAMPE are forthcoming, and we would like to see if such a softening is an universal feature (e.g. knee) for all nuclei with Z-dependence or A-dependence.

## Thanks for your attention!





Purple Mountain Observatory Chinese Academy of Sciences