

Constraining the Baryon Loading Factor of AGN Jets: an Implication from the Gamma-ray Emission of the Coma Cluster

Nanjing University

shixy@nju.edu.cn

TeV Particle Astrophysics, 28 October 2021, Chengdu, China

Xin-Yue Shi,

with Yi Zhang, Ruo-Yu Liu, Xiang-Yu Wang

Outline

* Background

baryon loading factor; the Coma cluster

* In the Coma Cluster, γ -ray production * baryon loading factor time averaged η_p /radiation related $\eta_{p,rad}$

Discussion & Conclusions

Baryon Loading Factor of AGN Jets

- AGN jets: promising acceleration sites of ultra-high energy cosmic rays
- The baryon loading: $\eta_{p,rad} = L_p/L_\gamma$ •

Blazar one-zone model:

 $\sim \sim \sim$ accretion disk (UV, X) $\sim \sim \sim$ cosmic ray the required L_p is significantly higher than the observed radiative luminosity (Keivani 2018; Xue 2019, 2020) $\sim \sim \sim$ broadline region blazar zone (opt, UV (broadband) $\sim \sim \sim$ If blazars can account for the diffuse neutrinos detected by IceCube, •

- $\eta_{p,\text{rad}} \sim 3 300$ is required (Murase 2014)
- * $t_{\rm cool} \gg t_{\rm esc}$ in AGN jets
- Galaxy clusters? *pp* collision with ICM

FIG. 1: Schematic picture of a blazar, showing external radiation fields relevant for neutrino production.

(Murase 2014)

The Coma Cluster

Abell 1656

at a distance of ~100 Mpc

redshift z = 0.023

total black hole mass (Ensslin 1998)

 $M_{\rm BH,tot} \approx 5.8 \times 10^{10} M_{\odot}$

total extracted gravitational energy

 $W_{\rm g} \approx 0.2 M_{\rm BH,tot} c^2 \approx 2.1 \times 10^{64} \text{ erg}$

FIG. 1: Gaussian kernel ($\sigma = 0.1^{\circ}$) smoothed TS map of the Coma cluster region output from gttsmap in the energy band 0.2 - 300 GeV. The map has a dimension of $4^{\circ} \times 4^{\circ}$ and a resolution of 0.1° per pixel. The white dashed circle is the region subtended by the virial radius, $\theta_{200} = 1.23^{\circ}$. The diamond p1 represents the position of TS value peak. The contours correspond to measurements of the Coma cluster using the Westerbork Synthesis Telescope (WSRT) at a central frequency of 352 MHz ([37]). The WSRT observations are smoothed with gaussian kernel ($\sigma = 0.05^{\circ}$). Contours start at 1 mJy beam⁻¹ and increase in steps of 6 mJy beam⁻¹.

The Coma Cluster

Abell 1656

at a distance of ~100 Mpc

redshift z = 0.023

total black hole mass (Ensslin 1998)

 $M_{\rm BH,tot} \approx 5.8 \times 10^{10} M_{\odot}$

total extracted gravitational energy

 $W_{\rm g} \approx 0.2 M_{\rm BH,tot} c^2 \approx 2.1 \times 10^{64} \text{ erg}$

FIG. 3: Spectral energy distributions (SEDs) of the extended emission component of the Coma cluster for the single radio model (red) and radio + p1 model (blue). The upper limits at 95% confidence level are derived when the TS value for the data points are lower than 4.

Radial Density Profile of CRs in the Coma Cluster

The diffusion coefficient

$$D_{\rm cl} = \frac{1}{3} \left(\frac{B}{\delta B}\right)^2 c r_{\rm L}^{2-w} l_{\rm c}^{w-1}$$

$$\approx 8.3 \times 10^{31} \left(\frac{l_{\rm c}}{0.3 \text{ Mpc}}\right)^{2/3} \left(\frac{E_p}{1 \text{ PeV}}\right)^{1/3} \times \left(\frac{BZ}{5 \ \mu \text{G}}\right)^{-1/3} \text{ cm}^2 \text{s}^{-1}$$

(w = 5/3 Kolmogorov diffusion) $l_c = 10 \% r_{\rm vir}, r_{\rm vir} \sim 3 \,\,{\rm Mpc}$

 $E_p = 1$ TeV, the diffusion timescale $t_{diff} \sim 16.4$ Gyr $\rightarrow 10$ longer than the Hubble time

Radial Density Profile of CRs in the Coma Cluster

The radial density distribution

Two injection history:

I: constant
$$Q_p(t) = const$$

II: redshift evolution $Q_p(t) \propto L(t_{lb})$ (Hasinger 2005; Ajello et al. 2012)

Radial Density Profile of CRs in the Coma Cluster

II: redshift evolution peaked at $z = 1 \sim 2$, $t_{lb} = 6 \sim 8$ Gyr

The γ -ray emissivity of *pp* interaction (Kelner 2006)

$$J_{\gamma}(E_{\gamma}, \mathbf{r}) = cn_{\rm ICM}(\mathbf{r}) \int_{E_{\gamma}}^{\infty} \sigma_{pp}(E_p) \frac{dN_p(E_p, \mathbf{r})}{dE_p dV} \times F_{\gamma}(\frac{E_{\gamma}}{E_p}, \mathbf{r})$$

"Beta-model" (Cavaliere 1976)
 $n_{\rm ICM}(r) \approx n_{\rm ICM}(0) \left[1 + (r/r_{\rm c})^2\right]^{-3\beta/2}$
 $n_{\rm ICM}(0) = 3.42 \times 10^{-3} \text{ cm}^{-3}, r_{\rm c} = 290 \text{ kpc} \sim 0.1 r_{\rm vir}, \beta = 0.75$

the spectrum of the secondary γ -ray in a single collision

The γ -ray intensity profile average over the solid angle

$$\Phi(E_{\gamma},\psi) = \frac{1}{2\pi(1-\cos\psi_{\text{vir}})} \int \frac{J_{\gamma}(E_{\gamma},\mathbf{r})}{4\pi D^2} dV,$$

Baryon Loading Factor in the Coma Cluster

I: The time-averaged baryon loading factor:

Baryon Loading Factor in the Coma Cluster

II: The radiation related baryon loading factor:

Definition in Murase et al. (2014):

$$\eta_{p,rad} = L_p / L_{\gamma}$$

 L_p : the total CR luminosity; L_{γ} : the bolometric radiation luminosity of the jet

$$\eta_{p,\text{rad}} = \frac{W_{p,\text{tot}}}{W_{\gamma}} = \eta_p / \langle \eta_{\gamma} \rangle$$

where $\eta_{\gamma} = W_{\gamma}/W_{g} = P_{rad}t_{Sal}/(0.2M_{BH}c^{2})$

 P_{rad} : the radiative power, t_{Sal} : the Salpeter time

Baryon Loading Factor in the Coma Cluster

II: The radiation related baryon loading factor:

Sample: 217 blazars (composed by 191 FSRQs and 26 BL Lac object) (Ghisellini 2014)

Discussion

- * Redshift evolution have slight effect on the result
- * The Coma cluster may be undergoing the merging process the gamma-ray profile
- * Typical AGN phase lifetime ~ 10^5 yr (Schawinski 2015), the total growth time $\sim 10^7 - 10^9$ yr (Fabian 1999; Yu 2002)

might not apply to one short, specific status of AGNs, such as an intense flare

Extrapolation of the result to the total AGN populations

redshift evolution

might not appropriate for X-ray luminous AGNs, due to significant suppression of X-ray luminous AGN

Conclusions

- Assuming all the observed γ -ray emission of galaxy clusters from the pp collision of cosmic rays • and ICM, we can obtain the total required proton energy and study the baryon loading factor of AGN jets.
- * The Coma cluster: the propagation and distribution of cosmic rays
- * Constraints on the average baryon loading factor using the γ -ray observations from Fermi LAT and VERITAS of the Coma cluster

		Fermi $\alpha = 2.1$	VER
	constant:	$\eta_p \lesssim 0.02$	η_p
	z evolution:	$\eta_p \lesssim 0.04$	η_p
		$\eta_{p,\mathrm{rad}} \lesssim 1$	η_p
-			

lower than that required to account for diffuse neutrino flux in the conventional blazar models

- RITAS $\alpha = 2$ ≤ 0.1 ≤ 0.2
- $_{r,rad} \lesssim 10$

Thank you for your attention!

