Magnetic field amplification by turbulent dynamo in relativistic collisionless shocks

Sara Tomita (Tohoku University) Yutaka Ohira (The University of Tokyo)

TeVPA2021, Chengdu, China (hybrid), 25-29, Oct. 2021

Magnetic field around Collisionless Shocks

Collisionless shocks in high-energy astrophysical phenomena:

- Acceleration site for cosmic rays (CRs).
- High-energy emission regions.
- → b-fields around a shock have a crucial role, it's highly uncertain!!

It's the key to unveil

- the acceleration mechanism of CRs.
- the environment of astrophysical objects.

Problems about b-fields around the shock

• When the interstellar magnetic fields ($\sim \mu G$) are compressed by

- The structure of magnetic field ?
- Usually, there is no information about pre-shock region.

Magnetic Field Amplification in Collisionless Shocks

Plasma Instabilities

Weibel1959; Lucek & Bell 2000; Bell 2004; Spitokovsky 2008; Drury & Downes 2012; Tomita et al. 2016, 2019

Both mechanisms are required.

Balsara & Kim 2001; Giacalone & Jokipii 2007; Inoue et al. 2009, 2011; Zhang et al. 2009; Mizuno et al. 2011

B-field amplification by turbulent dynamo in 3D MHD simulation (Inoue et al. 2011)

Kinetic energy of the
downstream turbulence>Magnetic energy
Sano, T. et al. 2013

However,

MHD simulation cannot solve b-fields amplification concerning high-energy particles.

In the downstream region of collisionless shocks, MHD approximation is always valid?

Density structures are maintained in post-shock regions?

- Collisionless shocks generate non-thermal particles.
- Particle diffusion is negligible??

In order for the MHD approximation to be applicable in downstream regions of collisionless shocks,

"gyro radius < size of density fluctuations" ?

 \ll How large ?

+ Amplitude of density fluctuations?

Purpose of Our Study:

We search the surrounding environment required for b-field amplification by the turbulent dynamo.

(+ particle acceleration via turbulence??)

Method:

Particle-in-Cell(PIC) simulation (L \sim plasma skindepth) of a relativistic collisionless shock propagating into inhomogeneous media (L \gg plasma skindepth).

Today's talk:

When the density fluctuation has a small amplitude ($\delta n_1/n_1 \leq 0.5$), MHD turbulence does not work in the downstream region of the relativistic collsionless shocks.

Simulation set up

*Source code given by Matsumoto Y.(Chiba Univ.)

- Two-dimensional electromagnetic PIC code* & Athena++ MHD code.
- e^{\pm} plasmas ($\equiv e^{-}$ -ion plasmas in the downstream regions of relativistic shocks.)
- Calculator: Cray XC50 (520 core) @NAOJ
- Box Size: $L_x = 3120 \, {}^c/_{\omega_{
 m pe}}$, $L_y = 1200 \, {}^c/_{\omega_{
 m pe}}$ ($\Delta x = \Delta y = 0.1 \, {}^c/_{\omega_{
 m pe}}$)

Simulation set up

- Upstream magnetization $\sigma_{\rm e}=B_0^2/4\pi\Gamma n_0m_{\rm e}c^2$.
- + (Clump size $2r_{
 m c}$)/ (Gyroradius $r_{
 m ge}$), Amplitude δ :

	δ	$\sigma_{ m e}$	$2r_c/r_{ge}$
case1	0.5	10 -3	9.5
case2	0.5	10 -5	0.9
case3	10.0	10 -3	9.5

(For the case of GRB afterglows)

The required ratio of the Clump size to the Gyroradius, for b-field amplification by the turbulent dynamo is 10-100 in the downstream region (downstream rest frame).

The ratio of a Clump Size to a Gyroradius

The condition required for turbulent dynamo to work

"Eddy Turn Over Time \leq Decceleration time of the shock",

predicts the maximum size of the upstream density fluctuations.

For Gamma-ray bursts,
$$t_{dec} \approx 10^4 \sec \left(\frac{E_{iso,53}}{n_{ISM,0}}\right)^{\frac{1}{3}} \Gamma_{sh,2}^{-\frac{5}{3}}$$
, $(n_1 \approx const.)$.
Since $t_{eddy} \approx \frac{\lambda}{c} \leq t_{dec}$, (*Downstream rest frame)
 $\lambda \leq 10^{14} \left(\frac{E_{iso,53}}{n_{ISM,0}}\right)^{1/3} \Gamma_{sh,2}^{-5/3} cm \approx 10^7 \left(\frac{E_{iso,53}}{n_{ISM,0}}\right)^{1/3} \Gamma_{sh,2}^{-5/3} \frac{c}{\omega_{pp}}$.

liealli μ-neiu is σμα,

the gyroradius of downstream thermal protons, $r_{\rm gp} \approx 10^4 \left(\frac{\sigma}{10^{-9}}\right)^{-\frac{1}{2}} \frac{c}{\omega_{\rm ex}}$. Thus, when the downstream clump size is $\lambda = 10^5 - 10^6 \frac{c}{\omega_{nn}}$, The ratio of the clump size to the gyroradius is $\frac{\lambda}{r_{op}} \approx 10-100$.

Results: MHD ($\sigma_{
m e}=10^{-3}$, Amplitude $\delta=0.5$)

9

Results: PIC ($\sigma_{\rm e}=10^{-3}$, Amplitude $\delta=0.5$)

* There is no injection particles in the white region in density distribution yet.

PIC, Amplitude dependence: Density 2D plots

Particle diffusion is suppressed,
so that the b-field is amplified
by the turbulent dynamo!

Why does the particle diffusion is suppressed? Thermal velocity of particles in the clump becomes lower than that for $n/n_0 = 0.5$?

 $\beta_{x,cd}$: Velocity of the Shocked clump

 $\Rightarrow n/n_0 \gtrsim 3$

Summary

PIC simulations of a relativistic collisionless shock propagating into e^{\pm} plasmas with the density clump:

Even if the clump size is larger than the gyroradius of the upstream plasma,

the density fluctuation with small amplitude $(n/n_0 < 1)$ could not drive efficient magnetic field amplification by the turbulent dynamo.

Future work:

We are performing many PIC simulations to understand the parameter dependence on the downstream turbulence and e⁻ energy distribution.

σ_e dependence: Density 2-dimensional(2D) plots

Density 2D plots: Comparison between PIC & MHD

The ratio of a Clump Size to a Gyroradius The condition required for turbulent dynamo to work "Eddy Turn Over Time \leq Decceleration time of the shock", predicts the maximum size of the upstream density fluctuations.

* For Gamma-ray bursts, $t_{
m dec} \approx 10^3 \sec E_{
m iso,53} v_{
m WR,8.3} \dot{M}_{WR,-5}^{-1} \Gamma_{sh,2}^{-3}$, $(n_1 \propto r^{-2})$,

$$\approx 10^{4} \sec \left(\frac{E_{\rm iso,53}}{n_{\rm ISM,0}}\right)^{\frac{1}{3}} \Gamma_{\rm sh,2}^{-\frac{5}{3}}, \qquad (n_{1} \approx const.).$$
(*Downstream rest frame)
Since $t_{\rm eddy} \approx \frac{\lambda}{c} \leq t_{\rm dec}, \ \lambda \leq 10^{14} \left(\frac{E_{\rm iso,53}}{n_{\rm ISM,0}}\right)^{1/3} \Gamma_{\rm sh,2}^{-5/3} cm \approx 10^{7} \frac{c}{\omega_{\rm pp}}.$
(*Downstream rest frame)
If the upstream b-field is 3uG, the gyroradius of thermal protons.

If the upstream b-field is $3\mu G$, the gyroradius of thermal protons,

$$r_{\rm gp} \approx 10^4 \left(\frac{\sigma}{10^{-9}}\right)^{-1/2} c/\omega_{\rm pp}.$$

Thus, when the clump size is $\lambda = 10^5 - 10^6 \frac{c}{\omega_{\rm pp}}$,

The ratio of the clump size to the gyroradius is $\frac{\lambda}{r_{gp}} \approx$ 10-100.

Particle-in-Cell(PIC) Simulation

Fundamental Equations:

Equation of motion of N particles $\frac{du_{\rm s}}{dt} = \frac{q_{\rm s}}{m_{\rm s}} \left(E + \frac{u_{\rm s}}{c\gamma_{\rm s}} \times B \right),$ $\frac{dx_{s}}{dx_{s}} = \frac{u_{s}}{dx_{s}}$ dt $\gamma_{\rm s}$

The Algorithm:

- **1.** Compute charge density in a grid point from velocities of particle in a cell.
- 2. Compute electromagnetic field in a grid point B_{A} from the charge density.
- 3. Update velocity and position.

Maxwell equations

