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Magnetic field around Collisionless Shocks

Collisionless shocks in high-energy astrophysical phenomena
* Acceleration site for cosmic rays (CRs). | &

* High-energy emission regions.

- b-fields around a shock have a crucial role,
it’s highly uncertain!!




Problems about b-fields around the shock

 When the interstellar magnetic fields (*1G) are compressed by
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We need to reveal the b-fields amplification mechanism !!
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* The structure of magnetic field ?

* Usually, there is no information about pre-shock region.



Magnetic Field Amplification in Collisionless Shocks

/ cre. o Weibel1959; Lucek & Bell 2000; Bell 2004; Spitokovsky 20@
* Plasma InStabllltles Drury & Downes 2012; Tomita et al. 2016, 2019

* Turbulent Dynamo ¢ Today’s talk (relativistic shocks)

. . Balsara & Kim 2001; Giacalone & Jokipii 2007,
Both mechanisms are required. Inoue et al. 2009, 2011; Zhang et al. 2009;

k Mizuno et al. 2011 /

Contact discontinuity

B-field amplification by turbulent dynamo o shock ho o Shock
in 3D MHD simulation (Inoue et al. 2011) d Ji

amplification concerning high-energy particles.
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In the downstream region of collisionless shocks,
MHD approximation is always valid?

Density structures are maintained in post-shock regions?
* Collisionless shocks generate non-thermal particles.

* Particle diffusion is negligible??

In order for the MHD approximation to be applicable in
downstream regions of collisionless shocks,

“gyro radius < size of density fluctuations” ?
< How large ?
+ Amplitude of density fluctuations?



Purpose of Our Study:

We search the surrounding environment required for b-field
amplification by the turbulent dynamo.

(+ particle acceleration via turbulence??)

Method:

Particle-in-Cell(PIC) simulation (L~ plasma skindepth) of
a relativistic collisionless shock propagating into inhomogeneous media
(L > plasma skindepth).

Today’s talk:

When the density fluctuation has a small amplitude (6n{/nq1 < 0.5),
MHD turbulence does not work in the downstream region of the
relativistic collsionless shocks.




Simulation set up

*Source code given by Matsumoto Y.(Chiba Univ.)
Two-dimensional electromagnetic PIC code* & Athena++ MHD code.

etplasmas (= e -ion plasmas in the downstream regions of relativistic shocks.)

Calculator: Cray XC50 (520 core) @NAO!

Box Size: Ly = 3120/, L, = 1200/, (Ax = Ay = 0.1/,,,,)

Number of particles: ny = 80/cell, total~10%° particles
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Simulation set up

* Upstream magnetization o, = B% / 41tI‘n0mec2.

* (Clump size 21)/ (Gyroradius 1), Amplitude & :
0 O. 2r./ry
casel 0.5 103 9.5

case2 0.5 10> 0.9
case3 10.0 103 9.5

(For the case of GRB afterglows)

The required ratio of the Clump size to the Gyroradius,

for b-field amplification by the turbulent dynamo is 10-100
in the downstream region (downstream rest frame).



The ratio of a Clump Size to a Gyroradius
The condition required for turbulent dynamo to work
“Eddy Turn Over Time < Decceleration time of the shock”,

predicts the maximum size of the upstream density fluctuations.
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The ratio of the clump size to the gyroradius is E ~10-100. o

Thus, when the downstream clump size is A = 10° — 10°




Results: MHD (o, = 1073, Amplitude § = 0. 5)
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Results: PIC (6, = 1073, Amplitude § = 0. 5)
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As well as the case of 6,=107°

PIC sim. shows b-field amplification
| BN Ly the turbulent dynamo.
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* There is no injection particles in the white region in density distribution yet.
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PIC, Amplitude dependence: Density 2D plots
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The required amplitude ™*/n, for keeping the density
shockfront - f]yctuation from particle diffusion

down up
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Summary

PIC simulations of a relativistic collisionless shock propagating
into eT plasmas with the density clump:

Even if the clump size is larger than the gyroradius of the
upstream plasma,

the density fluctuation with small amplitude (n/ny < 1) could
not drive efficient magnetic field amplification by the
turbulent dynamo.

Future work:

We are performing many PIC simulations to understand the
parameter dependence on the downstream turbulence and e-
energy distribution.

13



o.dependence: Density 2-dimensional(2D) plots
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Density 2D plots:
Comparison between PIC & MHD
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The ratio of a Clump Size to a Gyroradius
The condition required for turbulent dynamo to work

“Eddy Turn Over Time < Decceleration time of the shock”,

predicts the maximum size of the upstream density fluctuations.
- r—1 -3 —2
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If the upstream b-field is 3uG, the gyroradius of thermal protons,

Top = 104(10"_9)_1/2 c/wpp.

Thus, when the clump size is A = 10> — 10° ;p

The ratio of the clump size to the gyroradius is E ~10-100.
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Particle-in-Cell(PIC) Simulation

Fundamental Equations :

 Equation of motion of N  Maxwell equations
i 10E 41
particles 19% _wxp-2T;
dug qs Us c 0t C
= (E + —><B) , 10B
dt M Vs ——o- = —VXE (i+1.j+
dx, ug c Ot i+1,;
dt Vs 2
A
The Algorithm: ikt Y
1. Compute charge density in a grid point o Lo ‘
from velocities of particle in a cell. Lo G
B Jys Dy :’
» .

2. Compute electromagnetic field in a grid point By‘,f" J..E

from the charge density.

> T

3. Update velocity and position. Wy
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