

Unveiling the complex correlation patterns and emission mechanisms in Mrk 421

Axel Arbet-Engels Max Planck Institute for Physics, Münich

David Paneque, Lea Heckmann for the MAGIC, FACT and Fermi-LAT Collaborations and multiwavelength collaborators

Blazars

Radio to >TeV non-thermal emission

Super massive Black Hole (10⁶-10⁹ solar masses)

Minute-timescale to year-timescale flux variability

Relativistic plasma jet kpc – Mpc scale $\begin{array}{l} \textbf{Observed at small} \\ \textbf{viewing angle} \\ \rightarrow & \textbf{Strong relativistic} \\ \textbf{beaming effects} \\ \rightarrow & \textbf{Doppler factor } \delta \gtrsim 10 \\ \rightarrow & \textbf{F}_{observed} \sim \delta^4 \, \textbf{F}_{intrinsic} \\ \rightarrow & \Delta t_{obs} \sim \delta^{-1} \, \Delta t_{intrinsic} \end{array}$

Artistic view Credit: DESY, Science Communication Lab

Blazars

Radio to >TeV non-thermal emission

Super massive Black Hole (10⁶-10⁹ solar masses)

Many unknowns:

→ Composition of the jet?

Minute-timescale to year-timescale flux variability

Origin of gamma-ray flux?
 Hadronic or leptonic?

→ Acceleration mechanisms?

Origin of strong/fast variability?

Relativistic plasma jet kpc – Mpc scale

Artistic view Credit: DESY, Science Communication Lab

Blazars

Sources of >10¹⁸ eV cosmic rays? 10 galactic 10² **10**⁰ 10⁻² extra-Differential Intensity (m² sr s GeV)⁻¹ 10⁻⁴ galactic 10⁻⁶ -2.67 10⁻⁸ Knee 10^{-10 ⊧} ~8•10¹⁵ eV 10^{⁻12 ⊧} 10⁻¹⁴ 10^{⁻16 ▶} -3.19 10⁻¹⁸ 10⁻²⁰ 10⁻²² [▶] 10⁻²⁴ Ankle 10^{⁻26}⊧ ~10¹⁸ eV 10^{⁻28}ᢪ Fisk and Gloeckler, 2011 .2 10^{⁻30}⊧ 10¹³ 10¹⁵ 10¹⁷ **10**¹⁹ **10**²¹ 10⁹ **10**¹¹ 10 Energy (eV)

Sources of PeV neutrinos ?

The blazar Markarian 421 (Mrk 421)

- Bright and nearby blazar (redshift 0.031)
- Easily detectable during low & high states

 → Ideal to probe acceleration & emission
 processes in blazar jets

The blazar Mrk 421

- Bright and nearby blazar (redshift 0.031)
- Easily detectable during low & high states

 → Ideal to probe acceleration & emission
 processes in blazar jets
- Measured broadband SED can be produced by leptonic & hadronic scenarios

S⁻¹)

cm⁻² ;

'erg

log(*v*F"/

• Constraining models only possible via dense & simultaneous MWL observations that exploit the temporal evolution of the broadband emission

Multi-wavelength observations in 2017

- ~7-month multi-wavelength campaign
- Dense temporal coverage
- Radio to VHE (E>100GeV) observations
- 4 long *NuSTAR* observations simultaneous to MAGIC

 \rightarrow Excellent dataset to probe intra-band correlations and spectral evolutions

TeVPA 2021, online

VHE gamma-ray versus X-ray correlation – full campaign

VHE gamma-ray versus X-ray correlation – MAGIC/NuSTAR observations

VHE/X-ray correlations in various sub-energy bands up to hard X-rays (i.e., > 10keV)

VHE gamma-ray versus X-ray correlation – MAGIC/NuSTAR observations

<u>X-ray</u>

- VHE/X-ray correlations in various sub-energy bands **up to hard X-rays** (i.e., > 10keV)
- Sub-linear to more-than-cubic relations
- >1TeV flux shows stronger scaling with the X-rays than the 0.2-1TeV flux

VHE gamma-ray versus X-ray correlation – MAGIC/NuSTAR observations

VHE gamma-ray versus X-ray correlation

Gamma-ray emission changed by factor ~3, no change in the X-rays Interpreted within a one-zone leptonic model Adiabatic expansion of emitting zone over time (but no significant loss of electrons)

.

•

٠

2016-11-28 2016-12-18 2017-01-07 2017-01-27 2017-02-16 2017-03-08 2017-03-28 2017-04-17

VHE (>1TeV)

VHE (0.2-1TeV)

s⁻¹]

Flux [10⁻¹¹ cm⁻² 5

Daily bin light curves

2017-05-07 2017-05-27

---- 1 C.U.

MAGIC 0.2-1 TeV

1 C.U. (>1TeV)

MAGIC >1 TeV

Intriguing VHE flare on 2017 February 4th

- **Strong VHE flux but small X-ray counterpart** ٠
- Intepreted within a two-zone leptonic scenario ٠

Optical versus X-ray anti-correlation

- Anti-correlation at >3 sigma C.L.
 between X-ray and optical emission
- **Reported only once** so far, at low significance (Aleksic et al. 2015, A&A, 576, A126)

Optical versus X-ray anti-correlation

- Anti-correlation at >3 sigma C.L.
 between X-ray and optical emission
- **Reported only once** so far, at low significance (Aleksic et al. 2015, A&A, 576, A126)
- Suggests shift of low-energy SED component due to changes in electron cooling and acceleration efficiencies

Conclusions

• Blazars still poorly understood

 \rightarrow Simultaneous & dense MWL monitoring key to disentangle/constrain models

- Characterised intra-band correlations from extensive MWL campaign
 - X-ray/VHE tightly correlated, but complex & strong energy dependence
 - >3 sigma optical/X-ray *anti*-correlation; change of cooling/acceleration efficiencies ?
- Some intriguing results
 - "orphan" gamma-ray activity; sign of adiabatic expansion of emitting zone?
 - Strong VHE flare with faint X-ray counterpart; suggest appearance of narrow & energetic electron distribution

Backup

Parameters	MJD 57757	MJD 57785	MJD 57813	MJD 57840
	4 th January 2017	1 st February 2017	1 st March 2017	28 th March 2017
Γ_b	25	25	25	25
<i>B</i> ′ [10 ⁻² G]	6.1	7.0	6.1	10.0
$R' \ [10^{16} \ \mathrm{cm}]$	1	1	1.65	1.33
U'_{e} [10 ⁻² erg cm ⁻³]	1.1	1.0	0.24	0.22
α_1	2.2	2.2	2.2	2.0
α_2	3.8	3.1	3.9	4.0
$\gamma'_{min} [10^3]$	1.0	1.0	1.0	1.0
γ'_{br} [10 ⁵]	2.1	1.4	2.1	0.8
γ'_{max} [10 ⁶]	1.5	0.9	1.5	0.6
U_B'/U_e'	1.4×10^{-2}	2×10^{-2}	6.1×10^{-2}	1.8×10^{-1}

Table 5: Parameters of the SSC models obtained for each MAGIC/NuSTAR/Swift simultaneous observing epoch.

Notes. See text in Sect. 6 for the description of each parameter.

Backup

Parameters	quiescent zone	flaring zone
Γ_b	25	25
<i>B</i> ′ [10 ⁻² G]	6.1	16.5
$R' [10^{16} \text{ cm}]$	1.6	0.1
U'_e [erg cm ⁻³]	3.4×10^{-3}	3.4×10^{-1}
α_1	2.3	2.0
α_2	4.0	_
$\gamma'_{min} [10^3]$	1.0	20
γ'_{br} [10 ⁵]	1.3	_
γ'_{max} [10 ⁶]	1.5	0.6
U_B'/U_e'	4×10^{-2}	3×10^{-3}

Table 6: Parameters of the 2-zone SSC model shown in Fig. 16 during the flare of MJD 57788.

Notes. See text for the description of each parameter. The EED of the quiescent zone follows a broken power-law (BPL) with indices α_1 and α_2 before and after the break Lorentz factor γ'_{br} . In the case of the flaring zone, a simple power-law function (with index α_1) is adopted.

Backup

Correlation patterns and emission mechanisms in the blazar Mrk421