Cosmic surveys as a probe of dark matter

Ting Li (李婷) University of Toronto TeVPA 2021, Oct 27 2021 Chengdu, China

Huterer & Shafer 2018

Cosmology/Dark Energy

Buckley & Peter 2017

Dark Matter (DM)

Support for Construction of Direct Detection Dark Matter Experiments in Particle Astrophysics

PROGRAM SOLICITATION

NSF 13-597

National Science Foundation

Directorate for Mathematical & Physical Sciences Division of Physics

Letter of Intent Due Date(s) (required) (due by 5 p.m. proposer's local time):

October 16, 2013

Full Proposal Deadline(s) (due by 5 p.m. proposer's local time):

November 26, 2013

II. PROGRAM DESCRIPTION

There are three complementary methods for studying dark matter: (1) accelerator searches for dark matter particle production, (2) indirect detection of dark matter annihilation within the Galaxy, and (3) the direct detection of Galactic dark matter particles that pass through terrestrial detectors. This solicitation invites proposals for the next generation direct detection experiments.

Program Announcement To DOE National Laboratories

LAB 12-597

Office of Science Office of High Energy Physics

Second Generation Dark Matter Experiments

Investigation Requirements: There are three complementary methods for searching for dark matter: (1) accelerator searches for dark matter particle production, (2) indirect detection of dark matter annihilation within the Galaxy, and (3) the direct detection of Galactic dark matter particles that pass through terrestrial detectors. This Announcement solicits proposals for support of future second-generation experiments of the third type only, those that conduct direct-detection searches for dark matter particles.

The Hunt for Dark Matter

DM Density/ Local Stellar Kinematics DM Halo Density/J-Factor for dSph 10^{-37} 10^{-1} 10^{-38} 10^{-2} \sim 10⁻³⁹ \sim 10⁻³⁹ \sim 10⁻⁴ 10⁻⁴ 10^{-22} 10^{-3} Pass 8 Combined dSphs Produ ction [pb] 10^{-4} Fermi-LAT MW Halo Annhilation Cross Section SIMPLE (2012) 10^{-23} H.E.S.S. GC Halo MAGIC Segue 1 ĕ $\mathbf{\Phi}$ Abazajian et al. 2014 (1 σ) $({ m cm}^3 { m s}^{-1})$ CLOSS -nucleon cross 10-43 10^{-24} Gordon & Macias 2013 (2σ) Tin 10^{-44} Daylan et al. 2014 (2σ) 7Be 10^{-10} E upper limit from dSphs Neutr Calore et al. 2014 (2σ) 10^{-45} 10^{-9} \widehat{b} 10^{-25} Neutrinos 10^{-10} 10^{-46} IMP WIMP-Thermal relic 10^{-11} 10-47 10⁻¹² cross section Thermal Relic Cross Section Atmospheric and DSNB Neutrinos 10^{-26} 10^{-48} (Steigman et al. 2012) 10^{-13} 10^{-49} **Galactic Center excess** 10^{-14} 10^{4} $b\overline{b}$ 10^{-50} dark matter interpretation 10^{-27} 1000 10 100 10^{1} 10^{2} 10^{3} 10^{4} WIMP Mass $[GeV/c^2]$ LAT Collaboration DM Mass (GeV/c^2) Ackermann et al. 2015, PRL, 115, 231301 e.g., LUX DM Time e.g., Fermi-LAT Indirect Detection

Astrophysics provides the only robust, positive measurement of dark matter.

Require Coupling with Standard Model

Dark

latter

LSST Science Collaborations

There are currently eight active LSST Science Collaborations. Additional information about their work and membership can be found at the links below or by contacting the individual chairs, or the LSSTC Science Collaborations Coordinator (LSSTCSCC), Federica Bianco.

Galaxies

Michael Cooper (UC Irvine); Brant Robertson (University of California Santa Cruz);

Stars, Milky Way, and Local Volume 🖻

John Bochanski (Rider University); John Gizis (University of Delaware); Nitya Jacob Kallivayalil (University of Virginia);

Solar System 🖻

Meg Schwamb (Gemini Observatory Northern Operations Center); David Trilling (Northern Arizona University);

Dark Energy 🖻

Eric Gawiser (Rutgers The State University of New Jersey); Phil Marshall (KIPAC);

Active Galactic Nuclei

Niel Brandt (Pennsylvania State University);

Transients/variable stars 🖻

Federica Bianco (New York University); Rachel Street (LCO);

Strong Lensing 6

Charles Keeton (Rutgers-The State University of New Jersey); Aprajita Verma (Oxford University);

Informatics and Statistics

Tom Loredo (Cornell University); Chad Schafer (Carnegie Mellon University);

arXiv.org > astro-ph > arXiv:astro-ph/0005381

Astrophysics

[Submitted on 18 May 2000 (v1), last revised 25 Jul 2000 (this version, v2)]

The Dark Matter Telescope

J. A. Tyson, David Wittman (Bell Labs, Lucent Technologies), J. R. P. Angel (University of Arizona)

U.S. Particle Physics P5 Report, 2014

Table 1 Summary of Scenarios

		Scenarios			Science Drivers				
Project/Activity	Scenario A	Scenario B	Scenario C	Higgs	Neutrinos	Dark Matter	Cosm. Accel.	The Unknown	Technique (Fronti
Large Projects									
Muon program: Mu2e, Muon g-2	Y, Mu2e small reprofile needed	Y	Y					<	Т
HL-LHC	Y	Y	Y	~		~		~	E
LBNF + PIP-II	LBNF components delayed relative to Scenario B.	Y	Y, enhanced		1			~	I,C
ILC	R&D only	possibly small hardware contri- butions. See text.	Y	~		~		~	E
NuSTORM	N	N	N		~				Т
RADAR	N	N	N		1				Т
Medium Projects									
LSST	Y	Y	Y		~		~		с
DM G2	Y	Y	Y			~			с

8

Current and Near-Future Experiments

Dark Matter Candidates

Bertone & Tait, Nature 562, 51 (2018)

Dark Matter Candidates

https://arxiv.org/abs/1707.04591

What have we learned about dark matter from astrophysical observations?

What have we learned about dark matter from astrophysical observations?

 Dark matter is not baryon. Dark matter consist of 25% of the universe — CMB, BBN

ACDM Universe

Planck Collaboration (2016)

CDM — Cold, Collisionless Dark Matter

What have we learned about dark matter from astrophysical observations?

- Dark matter is not baryon. Dark matter consist of 25% of the universe CMB, BBN
- Dark matter cannot be hot (i.e. sub-keV-mass) Structure Formation

The Large-Scale Structure of the Universe

Dark Matter Candidates

Bertone & Tait, Nature 562, 51 (2018)

The Small-Scale Structure of Dark Matter

Simulations

e.g., Sterile Neutrino

Subhalo mass function

Simulation of Dark Matter

80 kpc

Milky Way Satellite Galaxy **Discovery Timeline**

Milky Way Satellite Luminosity Function

Satellite Luminosity

See also: Jethwa et al. 2018, Newton et al. 2018, Kim et al. 2018, Applebaum et al. 2020

galaxy

missing

Nadler et al. ApJ 893, 48 (2020)

Galaxy-Galaxy Strong Lensing

 Flux ratio anomalies of lensed quasar

 Gravitational Imaging: Substructure perturbations in lens arcs/rings

Lyman-alpha Forest Measurements

Warm Dark Matter Constraints

Constraints from: Viel et al. 2005, Viel et al. 2006, Seljak et al. 2006, Polisensky et al. 2011, Kennedy et al. 2014, Birrer et al. 2017, Irsic et al. 2017, Jethwa et al. 2017, Murgia et al. 2018, Vegetti et al. 2018, Ritondale et al. 2019, Gilman et al. 2019a,b, Hseuh et al. 2019, Palanque-Delabrouille et al. 2020 Enzi et al. 2020, Nadler et al. 2019,2021a,b

Pushing to Lower Mass

Perturbations to Tidal Streams

Erkal et al. (2017)

The Shapes of Dark Matter Halos

Simulations

e.g., Dark photon

Halo Density Profiles

SIDM reduces central density... but so do baryons

Radius from Galactic Center

Dark Matter Density

Radius from Galactic Center

Cross Section Constraints

The Hunt for Dark Matter

https://github.com/lsstdarkmatter/dark-matter-paper/issues/14

to learn about the

Dark Matter Candidates

Bertone & Tait, Nature 562, 51 (2018)

Primordial Black Holes

Did LIGO Detect Dark Matter?

Simeon Bird,^{*} Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess

MACHO / Primordial Black Holes

Current and Near-Future Experiments

Examples of Astrophysical Probes of Dark Matter

- Dwarf Galaxy Luminosity Function
- Density Perturbation in Stellar Streams
- Galaxy-Galaxy Strong Lensing
- Galaxy Clusters for SIDM
- Microlensing for PBH

Bias: Optical Observational Stellar Spectroscopist

Probing the Fundamental Nature of Dark Matter with the Large Synoptic Survey Telescope

LSST Dark Matter Group

2	Dark	ark Matter Models 4						
	2.1	Particle	Dark Matter	4				
		2.1.1	Warm Dark Matter	5				
		2.1.2	Self-Interacting Dark Matter	6				
		2.1.3	Baryon-Scattering Dark Matter	9				
	2.2	Field Dark Matter		11				
	2.3	Compac	t Objects	13				
3	Dark	k Matter Probes 10						
	3.1	Minimu	m Halo Mass	16				
		3.1.1	Milky Way Satellite Galaxies	17				
		3.1.2	Stellar Stream Gaps	20				
		3.1.3	Strong Lensing	23				
		3.1.4	Satellite Joint Analysis	30				
	3.2	Halo Pro	ofiles	33				
		3.2.1	Dwarf Galaxies as Lenses	34				
		3.2.2	Galaxy Clusters	38				
	3.3	Compac	t Object Abundance	42				

Drlica-Wagner et al, 2019 arXiv:1902.01055

Astrophysical Tests of Dark Matter with Maunakea Spectroscopic Explorer

2.	How can astrophysics probe the particle nature of dark matter? 2.1. Dark matter physics 2.2. Observables 2.3. The impact of baryons	5 5 7 9	
3.	 Stars and stellar streams in the Milky Way 3.1. Mapping the Milky Way's gravitational potential with stars, dwarf galaxies, and stellar streams 3.2. Dark matter halo distortions from the LMC in the Milky Way halo 3.3. Identifying the dark sub-halo population with stellar streams 3.4. Local dark matter distribution and kinematics for direct detection 3.5. Dark matter distribution in the Galactic Center for indirect detection 	9 10 12 15 17 18	
4.	 Dwarf galaxies in the Milky Way and beyond with resolved stars 4.1. Luminosity function of Milky Way satellites in the era of LSST 4.2. Precise determination of the J-factor of nearby ultra-faint dwarf galaxies 4.3. Controlling systematics with spatial and temporal completeness at high resolution 	19 20 22 23	
5.	 Galaxies in the low redshift Universe 5.1. The faint end of the galaxy luminosity function 5.2. Satellite populations in Milky Way analogs 5.3. Local galaxies as gravitational lenses 5.4. Ultra diffuse galaxies 	24 25 26 29 30	
6.	Galaxies beyond the low redshift Universe6.1. Quasar lensing: flux ratio anomalies due to low mass dark matter halos6.2. Galaxy-galaxy lensing: image perturbations by low mass dark matter halos6.3. Wobbling of the brightest cluster galaxies	32 32 34 36	Li et al, 2019 arXiv:1903.03155

https://lsstdarkmatter.github.io/dark-matter-graph/network.html

https://lsstdarkmatter.github.io/dark-matter-graph/network.html

Summary

- Cosmic surveys probe fundamental particle physics of dark matter via gravity.
- Observations and simulations continue to improve the constraints on the dark matter model.
- Exciting new experiments are under construction!
- Next Snowmass is coming in U.S. and we should make sure Astrophysical Probes of Dark Matter will be in the next P5