TeVPa 2021 @ Chengdu, China

<u>Radio Constraints on Multi-Messenger</u> <u>High-Energy Emission from Galaxy Clusters</u>

authors

Kosuke NISHIWAKI¹ / Katsuaki ASANO¹ / Kohta MURASE^{2,3}

- 1. Institute for Cosmic-Ray Research (ICRR), University of Tokyo
- 2. Pennsylvania State University
- 3. Yukawa Institute for Theoretical Physics, Kyoto University

contact: nisiwaki@icrr.u-tokyo.ac.jp

Multi-messenger from Galaxy Clusters (GCs)

Challenge for Hadronic (Secondary) Scenario

Challenge for Hadronic (Secondary) Scenario

Leptons: Giant Radio Halo (RH)

- Synchrotron radiation from relativistic electrons
- diffuse emission with ~Mpc scale
- appearance ~40%
- found in merging systems

Turbulent Re-acceleration scenario

merger-induced turbulence \Rightarrow wave-particle interaction

2021/10/28

Challenge for Hadronic (Secondary) Scenario

Aim : Radio constraints on hadronic model

Modeling Coma cluster

spectral shape

-> re-acceleration timescale : $t_{acc} \approx 300$ Myr assuming ~ μ G magnetic field (cf: Bonafede+2010)

- primary-secondary ratio: f_{ep}
- secondary scenario: $f_{ep} = 0$
- primary scenario: $f_{ep} = 0.01$ (our Galaxy)

Injection from the outer parts?

(*Another possibility: e.g., radially flat (increasing) turbulence, e.g., Pinzke et al. 2017)

Multi-wavelength spectrum

- relatively hard spectra
- under the Fermi-LAT limit
- gamma-ray available with future experiments (e.g., LHAASO, CTA)

- relatively soft spectra
- better match to the radio data

2021/10/28

Lifetime of the RH

Occurrence of RHs

- Onset condition
- 1. merger kinetic energy -> turbulent acceleration $\epsilon_{turb}(M,\xi,z) = \eta_{CR} f_{baryon} \epsilon_{kin}(M,\xi,z)$
- 2. above threshold -> onset $\epsilon_{turb}(M, \xi, z) > \chi_{CR} \epsilon_{ICM}(M, z)$

	η_{CR}	Xcr	t _{RH}
secondary	0.15	1%	∞
primary	0.25	0.05%	300 Myr
	~10%	similar to Coma	

<u>"secondary + re-acceleration" scenario</u> would also explain statistical properties!

High-Energy Backgrounds

- $f_{RH} \approx 0.4$ at all mass and redshift
- injection from cosmological shocks

2021/10/28

more optimistic result could be available from AGN injection model [e.g., Fang & Murase 2017]

Summery

- Challenge on hadronic scenario
 - non-detection with Fermi-LAT
 - re-acceleration model can explain RH under the gamma-ray limit
- Comparison between primary & secondary scenario
 - lifetime can be considerably different (secondary \gg 1Gyr, primary \approx 300 Myr)
 - both can explain Coma spectrum & statistical property
- High-energy backgrounds from GCs
 - sizable contribution to the IceCube flux is expected
 - AGN injection model would provide more optimistic result