Relationship between gamma-ray loudness and X-ray spectra of radio galaxies

Taishu Kayanoki, Yasushi Fukazawa (Hiroshima University, Japan)

TeVPA 2021

1 Radio Galaxies(RGs)

- Strong radio emission has been observed in about 10% of AGN(Active Galactic Nuclei)
 →Blazar, Radio Galaxy(RG)
- RGs : jet is viewed with a large angle.

In this study, we investigated the difference in their X-rays properties between GeV-loud and GeV-quiet RGs

AGN

1 Radio Galaxies(RGs)

Classification of RGs (FR-I, FR-II) FR-I:

• Radio Luminosity (178MHz) < 10^{26} WHz⁻¹

 Radio flux is high near the core and fades toward the outer region

• accretion rate \rightarrow Low

FR-II :

• Radio Luminosity (178MHz) > 10^{26} WHz⁻¹

 Radio flux is low near the core and becomes bright toward the lobe edge region with bright hot spots

• accretion rate \rightarrow High

[1] R. A. Perley, A. G. Willis and J.S.Scott, 1979, Nature volume 281, p.437 UTF2013442(1979) [2]Bridle, A. H., Hough, D. H., Lonsdale, C. J., Burns, J. O., and Laing, R. A., 1994, The Astronomical Journal, vol. 108, no. 3, p.766-820

2 Purpose and Sample of RGs

purpose:

We investigated the difference in their X-rays properties between GeV-loud and GeV-quiet RGs.

GeV-quiet RGs(radio flux limited sample) : B.Mingo et al. (2014) & F.Massaro et al. (2015) \rightarrow 25 objects

GeV-loud RGs : 38 objects

RGs radio flux and redshift (B.Mingo et al. (2014))

GeV-loud RGs are no bias in radio flux

Analyzed 63 RGs • FR-I : 30 objects (19 objects are GeV-loud) FR-II: 25 objects (12 objects are GeV-loud) • other (CSS, SSRQ) : 8 objects (7 objects are GeV-loud)

total: 63 objects

3 X-ray data

Priority of selection : XMM-Newton > Chandra > Swift, Nustar

4 X-ray emission of AGN

Features seen in the X-ray spectrum of AGN :

- Power laws commonly found in AGN ($\propto E^{-\Gamma}$)
- Fe line produced when emission is scattered by a torus (6.4keV)
- Emission blocked by the torus becomes Absorbed Power Law

emission (apec) component is generated.

*If there is a high-temperature plasma around the AGN, a high-temperature plasma

5 X-ray spectral analysis

6/12

6 Example of spectra GeV-quiet RGs

GeV-loud RGs

7 Results (scatter plot)

2—10 keV luminosity L_{2-10} erg/s vs Photon Index

in both Photon Index and Luminosity. Few GeV-loud RGs are undergoing significant absorption.

1044

 10^{45}

 10^{46}

2—10 keV luminosity L_{2-10} erg/s vs Absorption $N_{\rm H}$ cm⁻²

There is no obvious difference between GeV-loud and GeV-quiet RGs

1043

2-10 keV Luminosity (erg / s)

1042

 10^{41}

1040

2)

cm (cm

column density

 10^{18}

8 Discussion (On the absorption $N_{\rm H}$)

Table : Fraction of

	FR-I	FR-II	CSS	SSRQ	total
GeV-quiet	0.18	0.77	1	_	0.52
GeV-loud	0.16	0	0	0	0.08
total	0.17	0.4	0.17	0	0.25

 Nearly half of GeV-quiet RGs undergo absorption \rightarrow GeV-quiet FR-II is mostly absorbed RGs

absorbed RGs	$(N_{\rm H} > 10^{22})$
--------------	-------------------------

8 Discussion Few GeV-loud RGs are undergoing significant absorption.

GeV-loud RGs

By beaming, jets are brightened in the gamma-ray

- \rightarrow looking at jet from a smaller angle
- \rightarrow X-ray emission is not blocked by the torus

GeV-quiet RGs

Due to the weak beaming of the jet, the gamma-rays emission is weak and hard to observe

 \rightarrow looking at the jet from a large angle

 \rightarrow X-ray emission is easily blocked by the torus

8 Discussion (luminosity) The relationship between X-ray luminosity and absorption of RGs, including low-luminosity RGs, was investigated statistically.

Few high and low-luminosity RGs undergo absorption, while about half of medium-luminosity RGs undergo absorption

9 conclusion

- We analyzed the X-ray spectra of 63 RGs.
- Few GeV-loud RGs are undergoing significant absorption \rightarrow GeV-loud RGs are looking at the jet from a smaller angle, while GeV-quiet RGs are looking at the jet from a larger angle
- The relationship between X-ray luminosity and absorption of RGs, including low-luminosity RGs, was investigated statistically for the first time
- \rightarrow Few high and low-luminosity RGs were found to be absorbed, while about half of the medium-luminosity RGs were found to be absorbed

8 Discussion (Eddington ratio)

We examined the relationship between the Eddington ratio and the Photon Index.

Falling right for $\leq 10^{-4}$ and rising right for $\geq 10^{-4}$ \rightarrow Consistent? with AGN's relationship between Eddington Ratio and Photon Index

Relationship between Eddington Ratio and Photon Index Q.Yang et al. (2014)

