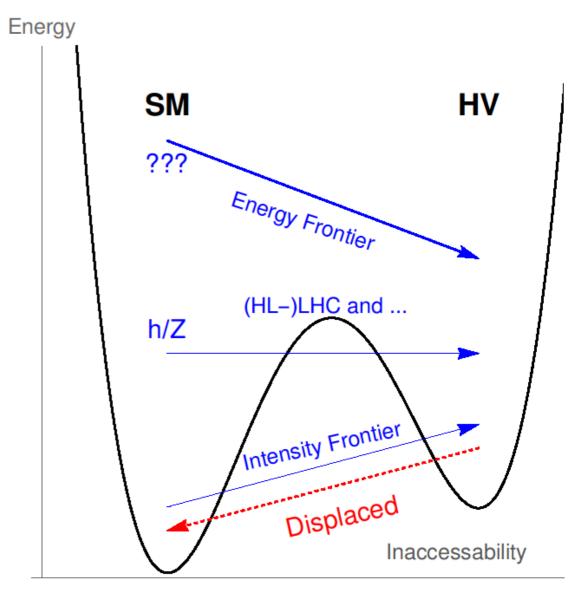
Strongly coupled dark sector and dark pions

Lingfeng Li (Brown U.)

29, Oct, TeVPA 2021, Cheng Du

2110.10691 w/ H-C. Cheng and E. Salvioni

See also:

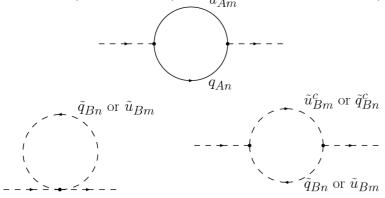

1803.03561 w/ H-C. Cheng, E. Salvioni and C. Verhaaren

1905.03772 w/ H-C. Cheng, E. Salvioni and C. Verhaaren

The Paths to the Hidden Valley

The overview of this talk

- Why a confined light hidden sector: two motivating cases
- > The dark pion model
- The irrelevant portal (Z and h) phenomenology
- Several benchmark longlived particle (LLP) searches
- Comments on cosmology

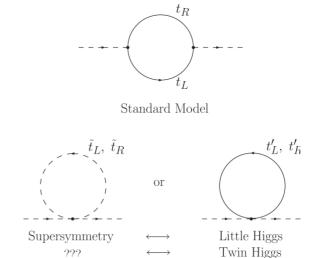


Motivating Scenario I: Neutral Naturalness

Top partners gauged under hidden SU(3) to avoid strong bounds

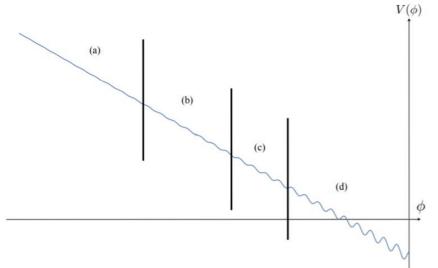
Folded SUSY

[G. Burdman, Z. Chacko, H.S $_{uAm}$ Goh and R. Harnik, 0609152]



See also Tripled Top (TT) model

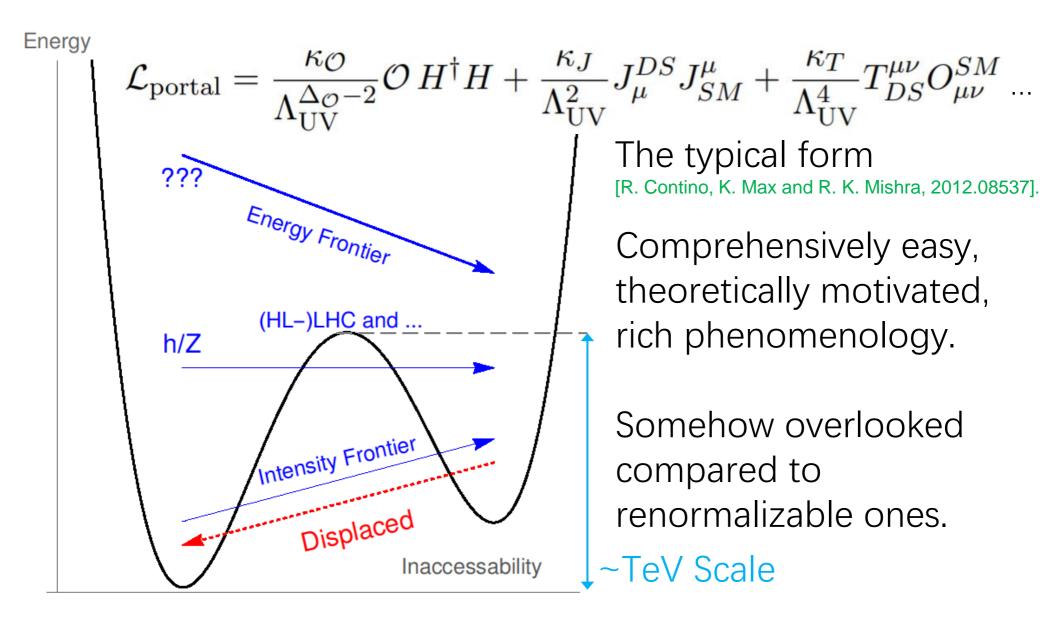
[H-C. Cheng, LL, E. Salvioni, and C. Verhaaren, 1803.03561]


Twin Higgs

[Z. Chacko, H.-S. Goh, and R. Harnik, 0506256]

Motivating Scenario II: Relaxion

The hidden SU(3) confinement generates the necessary backreaction potential



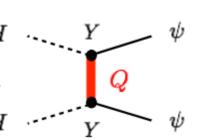
If the potential comes from the dark sector, the model avoids strong CP bounds.

See also: [O. Antipin and M. Redi, 1508.01112].
[H. Beauchesne, E. Bertuzzo and, G.
Grilli di Cortona, 1705.06325].

[P. W. Graham, D. E. Kaplan, and S. Rajendran, 1504.07551].

Irrelevant Portal

Irrelevent Portal Dark Pions


A simple theory having N(>1) dark flavors:

$$-\mathcal{L}_{UV} = \overline{Q}_L \mathbf{Y} \psi_R H + \overline{Q}_R \widetilde{\mathbf{Y}} \psi_L H + \overline{Q}_L \mathbf{M} Q_R + \overline{\psi}_L \boldsymbol{\omega} \psi_R + \text{h.c.},$$

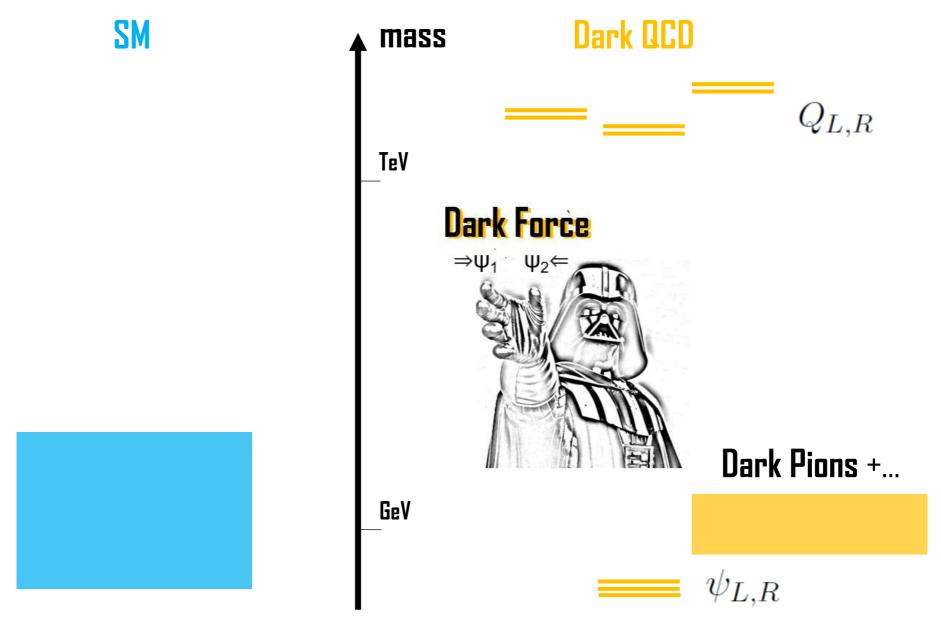
 $oldsymbol{\omega}, oldsymbol{M}, oldsymbol{Y}, \widetilde{oldsymbol{Y}}$: N by N mass/Yukawa matrixes

 $Q_{L,R}$: Heavy (mass~M~TeV) doublet fermion mediators

 $\psi_{L,R}$: Light SM singlet fermions that give dark pions

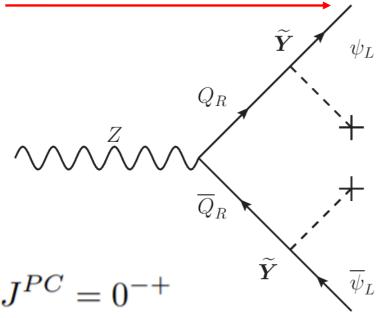
$$\mathcal{L}_{\text{EFT}} = \frac{1}{2} \overline{\psi}_{R} \mathbf{Y}^{\dagger} \mathbf{M}^{-2} \mathbf{Y} \left[|H|^{2} i \not \!\!\!D + i \gamma^{\mu} H^{\dagger} D_{\mu} H \right] \psi_{R} + \text{h.c.}$$

$$+ \frac{1}{2} \overline{\psi}_{L} \widetilde{\mathbf{Y}}^{\dagger} \mathbf{M}^{-2} \widetilde{\mathbf{Y}} \left[|H|^{2} i \not \!\!\!\!D + i \gamma^{\mu} H^{\dagger} D_{\mu} H \right] \psi_{L} + \text{h.c.}$$


$$- \overline{\psi}_{L} \boldsymbol{\omega} \psi_{R} + \overline{\psi}_{L} \widetilde{\mathbf{Y}}^{\dagger} \mathbf{M}^{-1} \mathbf{Y} \psi_{R} |H|^{2} + \text{h.c.},$$

Dimension-6 Z portal couplings

Dimension-5 Higgs portal coupling


We focus on dark pions with mass ~ O(GeV)

The Cartoon of Dark Spectrum

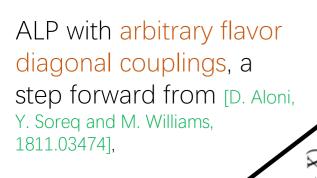
Two Flavor, Three Dark Pions

Z portal dark pion production

Dark pions rearrange into CP eigenstates (like K_S and K_I in the SM)

The π_1 and π_3 decay via Z portal, behave like ALP (axion-like-particle) with a large ALP decay constant:

$$\overline{\psi}_L$$
 $f_a \sim \frac{M^2}{Y^2 f_{\hat{\pi}}}$ or $\frac{M^2}{\widetilde{Y}^2 f_{\hat{\pi}}} \sim 1 \text{ PeV}$


Z portal dark pion decay

The π_2 decay via its mixing with the Higgs since it's CP-even, well described by the mixing angle:

$$s_{\theta}^{(2)} \sim 2\pi f_{\hat{\pi}}^2 \frac{v}{m_h^2} \frac{Y\widetilde{Y}}{M} \sim 10^{-6} \left(\frac{Y\widetilde{Y}/M}{10^{-2}~\text{TeV}^{-1}}\right) \left(\frac{f_{\hat{\pi}}}{\text{GeV}}\right)^2 \\ \text{Higgs portal dark pion production}$$

Higgs portal dark pion decays

Dark Pion Decays (ALP-Like)

$m_{\pi} < m_{\eta'}$: dimuon mode

A.1
$$a \rightarrow \gamma \gamma$$

A.2
$$a \to \pi^+\pi^-\gamma$$

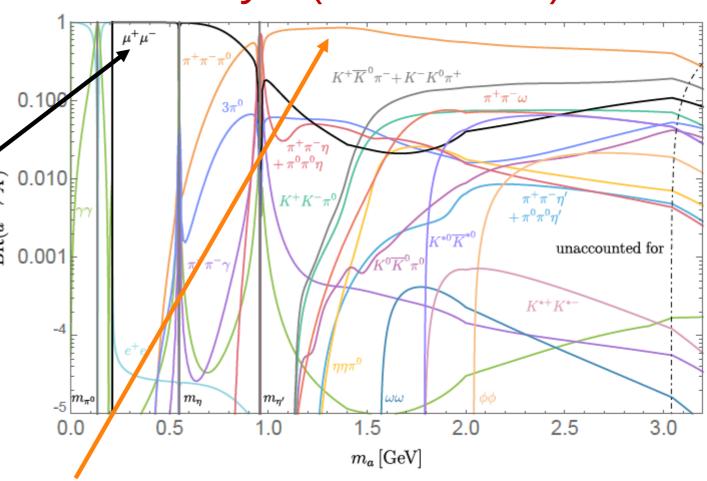
A.3
$$a \rightarrow \pi^+\pi^-\pi^0$$

A.4
$$a \rightarrow 3\pi^0$$

A.5
$$a \to \pi^0 \pi^0 \eta, \pi^+ \pi^- \eta$$

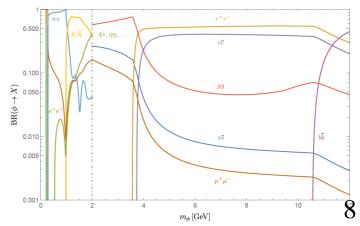
A.6
$$a \to \pi^0 \pi^0 \eta', \pi^+ \pi^- \eta'$$

A.7
$$a \to \eta \eta \pi^0$$

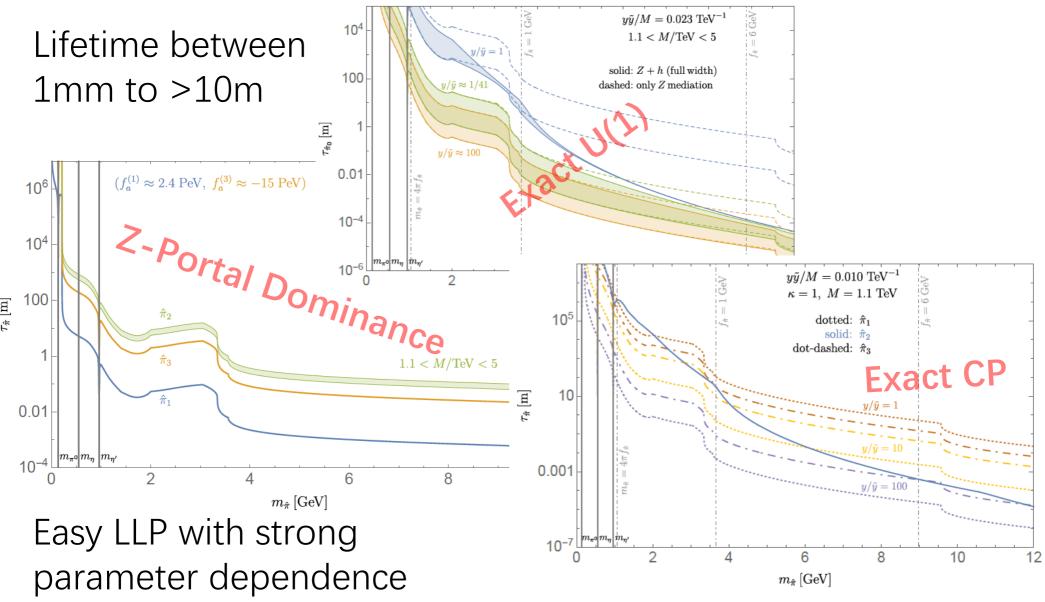

A.8
$$a \to K^0 \overline{K}^0 \pi^0$$

A.9
$$a \to K^+K^-\pi^0$$

A.10
$$a \rightarrow K^+ \overline{K}^0 \pi^-, K^- K^0 \pi^+$$


A.11
$$a \to \omega \omega, \phi \phi, K^{*+}K^{*-}, K^{*0}\overline{K}^{*0}$$

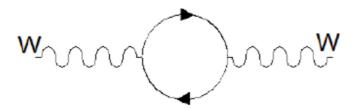
A.12
$$a \to \pi^+\pi^-\omega$$

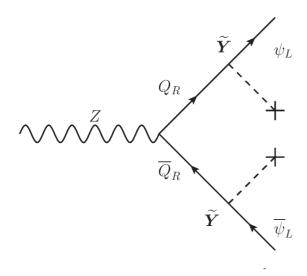


 $m_{\pi} > m_{\eta'}$: PPP modes (mostly SM $\pi^+\pi^-\pi^0$)

Higgs portal decay follows [M. W. Winkler, 1809.01876]

Dark Pion as Long-lived Particles

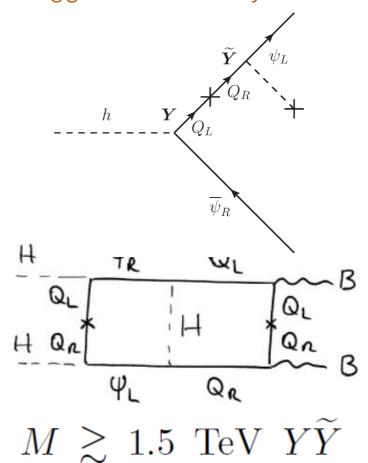



Lingfeng Li (Brown U.) arXiv: 2110.10691

Indirect/Precision Constraints

$$M \gtrsim 0.9 \,\mathrm{TeV} \, Y^2 \Big(\frac{N_d N}{6}\Big)^{1/2}$$

From EW oblique parameter $T < O(10^{-3})$



$$M \gtrsim 0.8 \, {
m TeV} \, Y \Big(\frac{N_d N}{6} \Big)^{1/4}$$

 $M \gtrsim 0.9 \,\mathrm{TeV} \, Y^2 \Big(\frac{N_d N}{6}\Big)^{1/2} \quad M \gtrsim 0.4 \,\mathrm{TeV} \Big(\frac{N_d \mathrm{Tr}(\boldsymbol{Y} \boldsymbol{Y}^{\dagger} \widetilde{\boldsymbol{Y}} \widetilde{\boldsymbol{Y}}^{\dagger})}{3 \times 10^{-4}}\Big)^{1/2}$

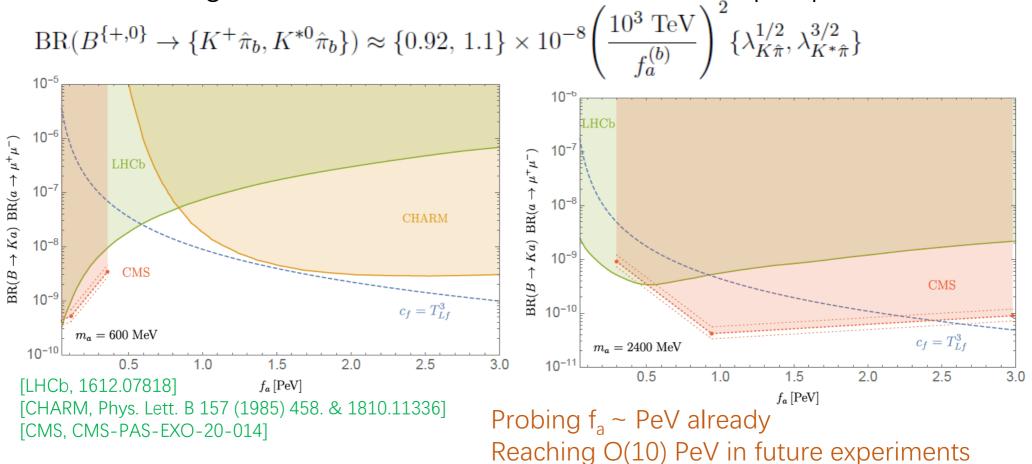
From Higgs invisible decay BR < 13%

From electron EDM if CP is violated maximally

From Z invisible decay width <~2 MeV

Dark Pion from SM FCNC

Although suppressed by the small CKM and loop factors, FCNC meson decays are still relevant as the FCCC SM heavy flavor decays are suppressed by $(M_W)^{-4}$ already.

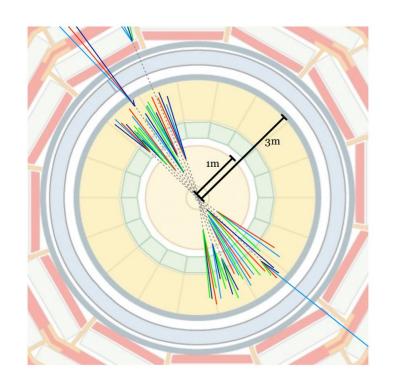

$$\mathcal{L}_{\mathrm{eff}} \sim \bar{d}_{L\alpha} d_{L\beta} \overline{\psi}' \psi', \qquad \alpha < \beta \quad \overline{\psi}$$
Amplitude can be fully adapted from ψ
ds \rightarrow vv results in [Inami, Lim 1980]

The four-fermion interaction then followed by the factorization, which should be exact for dark QCD vs. QCD.

$$\langle \hat{\pi}_a X | \mathcal{H}_{\text{eff}} | B \rangle = \langle \hat{\pi}_a | \langle X | \mathcal{H}_{\text{eff}} | 0 \rangle | B \rangle = \frac{ig^2}{64\pi^2} V_{ts}^* V_{tb} \langle X | \bar{s}_L \gamma_\mu b_L | B \rangle \frac{p_{\hat{\pi}}^\mu}{f_a^{(a)}} \left[\frac{m_t^2}{m_W^2} \left(\log \frac{M^2}{m_t^2} - 2 \right) + 3 \right]$$

Current FCNC Bounds

The bound as long as the experimental Ecm > the BB/KK thresholds Limits coming from LHC, ee colliders and beam dump experiments.

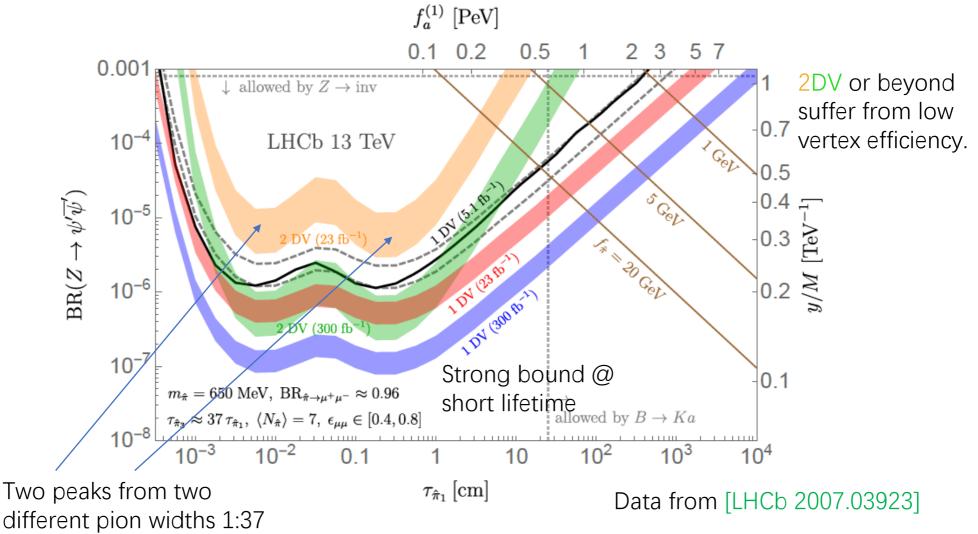

Kaon FCNC invisible modes give similar constraints as the LLP mode. [NA48/2 1612.04723]

de. BR
$$(K^+ \to \pi^+ \hat{\pi}^{(b)}) \approx 3.9 \times 10^{-11} \left(\frac{10^3 \text{ TeV}}{f_a^{(b)}}\right)^2 \lambda_{\pi\hat{\pi}}^{1/2}$$
 Lingfeng Li (Brown U.) arXiv: 2110.10691

Phenomenology @ the LHC

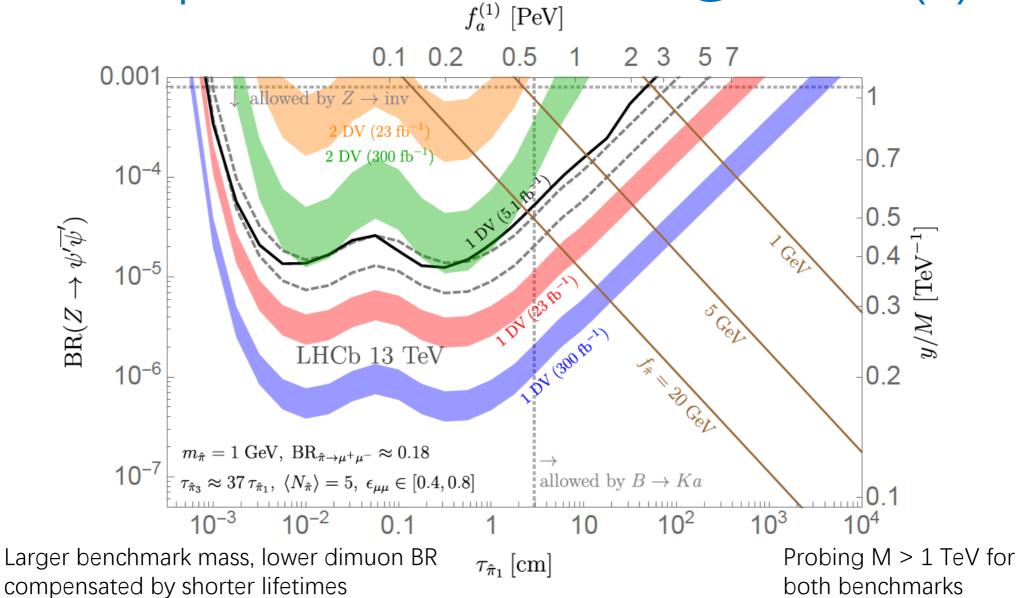
Z exotic decays to dark quarks with BR:

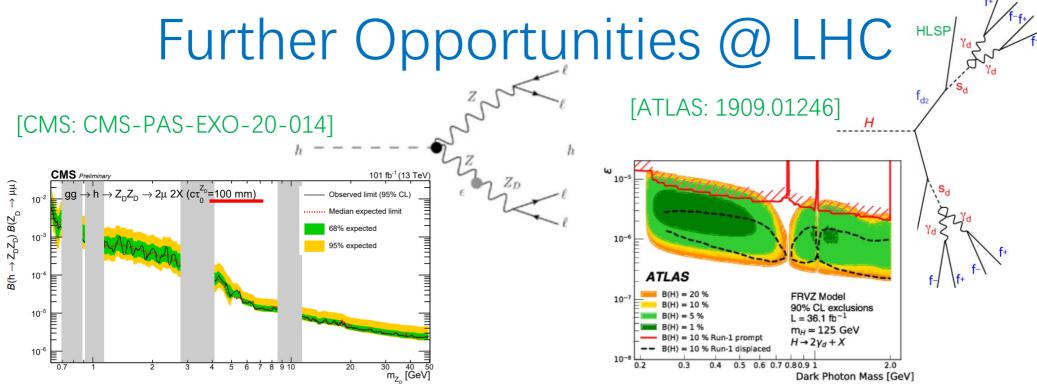
$$1.8 \times 10^{-4} \left(\frac{N_d \text{Tr}(\mathbf{Y} \mathbf{Y}^{\dagger} \mathbf{Y} \mathbf{Y}^{\dagger}) + (\mathbf{Y} \to \widetilde{\mathbf{Y}})}{3} \right) \left(\frac{1 \text{ TeV}}{M} \right)^4$$

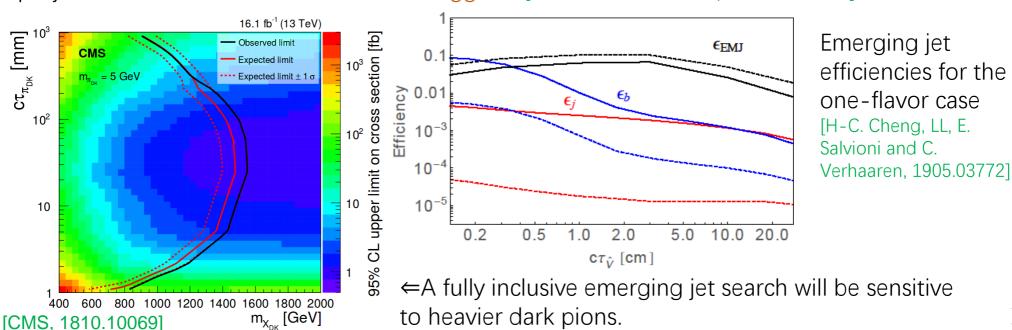

Dark quarks hadronize into many dark pions, forming dark jets.

If any dark pion is a LLP → The case often referred to as "emerging jets"

[P. Schwaller, D. Stolarski and A. Weiler, 1502.05409] [CMS, 1810.10069]

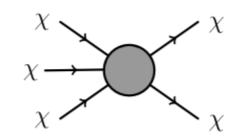

Example: Dimuon Search @ LHCb

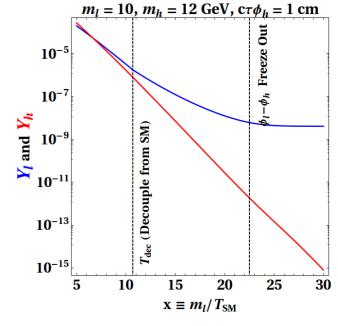

Most straightforward strategy: if dark pion decays to dimuon largely, simply count the number of displaced dimuon vertexes.


Lingfeng Li (Brown U.) arXiv: 2110.10691

Example: Dimuon Search @ LHCb (II)

The dark pion searches at ATLAS/CMS benefit from larger luminosities and decay volume. Reprojection are non-trivial. LLP oriented triggers? [Y. Gershtein and S. Knapen, 1907.00007]


Comments on Cosmology


Our vanilla dark pion model is not strongly constrained by

astrophysical/cosmological observations.

If isospin is exact, all dark pions are stable. For N(flavor)>2 case, reducing number density from WZW interactions (SIMP DM-like): [Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J. G. Wacker, 1411.3727] +.....

Need extra mediators to dump the entropy generated.

As long as a dark pion is unstable, the number density depletion is fast via pion scattering. Small relics and weak bounds. See also [Y. Tsai and LL,1901.09936]

The DM possibilities are still wide open with non-minimal dark components. For example, asymmetric baryonic DM or mesino/glueballino DM in SUSY UV completions.

Summary

- Dark mesons are common and well motivated. From simple UV structures, there will be rich phenomenology.
- ➤ A theory of dark pion that gives LLP. Dedicated calculations for mass < 3 GeV cases.
- Phenomenology from current data shows that an M ~ a few TeV is achievable.
- Open fields (LHC upgrades, future colliders, intensity frontier, cosmology) remain to be fully explored.

Backup Slides

Symmetries of the Dark Pion Model

Depending on forms of $\omega, M, Y, \widetilde{Y}$, the symmetry of the model varies. We consider 3 benchmarks:

Symmetries possessed			Decay portals		
$\widetilde{\boldsymbol{Y}} = 0$	exact $U(1)$	exact CP	$\hat{\pi}_1$	$\hat{\pi}_2$	$\hat{\pi}_3$
\checkmark	×	×	Z	Z	Z
×	✓	×	stable	stable	Z, h
×	x	√	Z	h	Z
/		\			

The U(1) subgroup of the SU(2) isospin is exact if everything is diagonal

The Higgs portal is greatly suppressed if either \mathbf{Y} or $\widetilde{\mathbf{Y}} = 0$

The CP is conserved in the dark sector if all couplings are real.