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The MB87 Jet

Relativistic Jets
» OQutflow of highly collimated plasma “—
* Microguasars, Active Galactic Nucleil, Qurswors
Gamma-Ray Bursts, Jet velocity ~c "
» Generic systems: Compact object (Neutron v A,»

Star, Black Hole) + accretion flows

e Jets are common In the universe /.

* Key Issues of Relativistic Jets L
* Acceleration & Collimation & -
* Propagation & Stability o e

* Origin of high energy particle
(particle acceleration) v

0.00001 arcseconds
0.003 light years




Theory of Jet Formation & Acceleration i

e Relativistic jet is formed and accelerated by macroscopic %5

plasma (MHD) process with helically twisted magnetic field e )

MHD process
» Collimated jet Is formed near the central BH and (schematic picture)

accelerates y>1 with mildly-relativistic sheath wino

40 |

e But, it has problems 20
e Most of energy remains in Poynting energy (magnetic 7
energy) even at large scale o
 Acceleration need take longer time (slow acceleration

efficiency) ~20

= Need Rapid energy conversion (dissipation)
GRMHD simulations

—40 kL
(Porth, YM et al. 17)
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Regions of AGN Jet Propagation

Jet Collimation/Acceleration Region
Jet Launching Region (10 —100 x Launching Region)

Modified from Graphic
courtesy David Meler
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e Jet launching by magnetohydrodynamic (MHD) process = Poynting flux dominated jet with twisted

magnetic field

 Need rapid magnetic energy dissipation to make a kinetic energy dominated |et at large scale
(observationally supported)

* Energy dissipation may related particle acceleration and high-energy emission with short-time variability




Ultra-Fast TeV Flare in Blazars

PKS2155-304 (Aharonian et al. 2007)
» Ultra-Fast TeV flares are observed in some Blazars.  Seealso Mrk301, PRS1222+21

I

 Variation timescale: t,~3min << R¢/c ~ 3Mg hour

* For the TeV emission to escape pair creation
Yem=>90 IS required (Begelman+ 08)
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« But bulk jet speed is not so high (y~ 5-10)

05 s
» Emitter; compact & extremely fast T e
Time - MJD53944.0 [min]
| JET 1 !
* Proposed Model: Magnetic Reconnection inside jet \ // B
(Giannios+ 09) \ T | TEET
* Questions: How to make magnetic reconnection in e\liﬂ

emitting blobs

jet?

Giannios et al.(2009) |



CD Kink Instability sronsptseo |

CD kink instability

Instability for q, .= 2

e Well-known instabillity in laboratory plasma
(TO)KAMAK), astrophysical plasma (Sun, jet, pulsar
etc).

* |n configurations with strong toroidal magnetic
fields, current-driven (CD) kink mode (m=1) is
unstaple.

e [his Instability excites large-scale helical motions
that can be strongly distort or even disrupt the
system

e Distorted magnetic field structure may trigger of
magnetic reconnection.

Pinch
' — INSTABILITY
LINEAR KINK

Y
3D RMHD simulation of CD kink
instability in PWNe (Mizuno+ 11)



. ' . Temporal pfroperties
CD Kink Instability in Jets

« Helical structure is developed by CD kink instability. T

* Magnetic energy In the jets converts thermal & kinetic energies .

by development of instability (via turbulence) el

 Jet structure Is strongly deformed but may be not disrupted : DenS|ty
entirely (depends on magnetic pitch, density, & flow profiles). . ~ +Bfield

e |nstability is trigger of magnetic
dissipation through magnetic
reconnection & turbulence

= rapid magnetic dissipation
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Mizuno+ (09, 11b, 12, 14b), Singh, YM+ (15), Kadowaki, YM+ (20)



Searching of Magnetic Reconnection Site

é1
Projected Magnetic Field B A
Vin Vin
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Observer Frame (primed variables) Jet Frame Reconnection Frame (tilded variables)

* Using data from 3D RMHD simulations of CD kink instability based on Mizuno+ (12)

* USing periodic boundary along jet direction and follows growth of a few wavelength of CD kink
instability

e Using magnetic reconnection search algorithm to find the local reconnection site
e Evaluate magnetic reconnection rate

Kadowaki, YM+ (2021)



Magnetic Reconnection In Jets

Centour

* Looking for magnetic reconnection site ...
(opposite field topology) in helically -
twisted jets by CD kink instability

» Calculate reconnection rate, <Vrec> ~ 0.05

e [n agreement with relativistic turbulent
reconnection simulation (Takamoto+ 15) i
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Particle Acceleration In Jets

* Local magnetic reconnection in jets will heat tr
les by1st-order Fermi acceleration process.
icle simulations of Fermi acceleration in turbulent fields

to relativistic velocit

e Performed test-part
developed by CD Ki

10"

Particle Kinetic Energy Distribution Evolution

Nk instability in relativistic jets
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Medina-Torrejon, YM+ (2020)



Particle Acceleration

e [njected 10,000 particles (initially Maxwellian with 1010 K and mean Exin ~ IMeV (~10-3
myc?)) for background B ~0.1G

e Particles are

CD kink instabi

ai

nly accelerated along wiggl

'y and development of turbu

ence.

e Particle accelerated larger than 100 MeV (~0.1m,c?)
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Particle Acceleration

max energy growth (saturation
~ Larmor radius (E/gB)= jet diameter number of
* particles
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Particle Spectrum

e Particles have Maxwellian distribution
initially (red)

* As particles accelerate, populate higher
energy tall, spectrum becomes flatter.

* In late acceleration time, distribution has
very flat power-law profile. Due to no
escape from acceleration zone (particles
are re-enter) & radiative loss (nature
should have p>1)
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summary

e Evaluate how magnetic reconnection structure evolve in 3D RMHD simulations of CD

Kink Instability in magnetically dominated relativistic jets by using search algorithm to
identify magnetic reconnection site

* Average recon
theory of turbu

* |[nvestigate particle acceleratior
turbulence in magnetically domi

Nect]

ent-|

on rate Is ~ 0.05 which
nduced magnetic recor

g

injected In 3
ated relativistic |ets

D RMH

IS comparable to the prediction from the
nection

D simulations of kink instability

* Injected low energy protons are accelerated exponentially by stochastic Fermi-like
acceleration mechanism, up to ~ 1010 MeV for background B ~ 0.1G which create a
power-law distribution

» Clear association of acceleration particles with fast magnetic reconnection

* This mechanism would explain very high energy particles (protons) and associated
neutrino emission observed some blazars
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