TeV Particle Astroparticle 2021 // 29.10.2021

Kathrin Nippel, Felix Kahlhöfer, Michael Korsmeier, Michael Krämer, Silvia Manconi

Constraining Dark Matter Annihilation with Cosmic Ray Antiprotons using Neural Networks ArXiv:2107.12395

Antiprotons at AMS-02 for **Indirect DM Searches**

E [GeV]

Antiprotons at AMS-02 for Indirect DM Searches

Computationally expensive!

 $\mathcal{O}(10^5)$ cpu hours scan for this number of parameters

(Astrophys. J. 537 (2000) 763-784)

Outline

- 1. Artificial Neural Network Development
 - 1.1. Training set
 - 1.2. Architecture & training
 - 1.3. Validation

- 2. Application to ID Analysis
 - 2.1. Marginalization using importance sampling
 - 2.2. Constraining $\chi\chi \rightarrow b\bar{b}$
 - 2.3. Constraining scalar singlet DM
- 3. Conclusion

Training Set

29.10.2021

Kathrin Nippel

Dark Matter Annihilation

WIMP, 5 GeV - 5 TeV Injection spectra following "PPPC4DMID" [1012.4515]

Choose branching fractions randomly

Cosmic Ray Propagation

MultiNest fit to AMS-02 data (assuming no DM)

→Understand relevant parameter space

see e.g. [1903.01472]

Extensive training set based on physical reasoning

Goal: Neural network is suited to well represent relevant parameter space

Architecture & Training

sNet

- Inputs normalized
 - Outputs scaled with $\tilde{\Phi}_{\rm DM}(x) = \log_{10} \left(m_{\rm DM}^3 \, x \, \Phi(E) \right)$
 - $\tilde{\Phi}_{\rm s}(E) = \log_{10} \left(\Phi(E) \, E^{2.7} \right)$
- Recurrent layer used to learn smooth spectrum
- Exact input to output mapping

Validation Direct Comparison of Spectra

29.10.2021 Kathrin Nippel

Differences between network predictions and simulations of spectra sufficiently small compared to measurement uncertainties

Validation Comparison of χ^2

29.10.2021 Kathrin Nippel

 $\rightarrow \chi^2$ distributions agree for individual DM models and large sample of propagation parameter points

29.10.2021 Kathrin Nippel

Marginalization using Importance Sampling

29.10.2021
Kathrin Nippel**Constraining**
 $\chi\chi \rightarrow b\bar{b}$

Resulting $\Delta \chi^2$ distribution for m_{DM} - $\langle \sigma v \rangle$ parameter space + 95% CL exclusion bounds

Preference for DM with masses in the range of ~ 50–250 GeV Marginalisation leads to relaxed exclusion bounds

 $\begin{array}{c} \begin{array}{c} \text{29.10.2021} \\ \text{Kathrin Nippel} \end{array} & \begin{array}{c} \text{Constraining} \\ \chi \chi \rightarrow b \overline{b} \end{array}$

- Differences between bounds are result of the respective methods
- Significant speed-up achieved by implementing ANN
 - individual data points: > O (10³)
 - marginalization: \mathcal{O} (10³)
 - profiling: \mathcal{O} (10²)

Profiling over propagation parameters:

- MultiNest fit based on NN spectra
- Need to ensure no convergence towards untrained parameter regions

Constraining Kathrin Nippel **Scalar Singlet Dark Matter**

 $\mathcal{L} \supset \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S 0}^2 S^2 - \frac{1}{4} \lambda_S S^4 - \frac{1}{2} \lambda_{hs} S^2 H^{\dagger} H$

29.10.2021

→ see e.q. [hep-ph/0011335]

Neural network approach well suited for models with rich branching fraction structure

Institute for Theoretical Particle Physics and Cosmology

Conclusions

github.com/kathrinnp/DarkRayNet

- Replace GALPROP with Neural Network in indirect DM analysis
 - Based on AMS-02 antiproton measurement
 - Physically motivated training set
 - Recurrent network well suited
 - Multiple checks of network accuracy
- Constrain $\chi\chi \rightarrow b\bar{b}$ and SSDM
 - Use advantage of previous fit of CR propagation for importance sampling
 - Speed up of two to three orders of magnitude
 - Network and method can be applied to further models
- Future Direction:
 - Bayesian Neural Network
 - Include different models for CR propagation

29.10.2021
Kathrin NippelBackup:
Propagation Parameter Space

Backup: Scaling of DM Spectra

29.10.2021 Kathrin Nippel

15

Early stopping Monitor val. loss, patience = 40

TTK Institute for Theoretical Particle Physics and Cosmology RWTH/

Backup: Recurrent Neural Networks

Idea:

- Neural Network with connections with nodes
- Optimization: 'Back propagation through time'
- Sequence processing

Basic Concept:

Backup: Zoomed-in Spectra Validation

29.10.2021

Kathrin Nippel

29.10.2021
Kathrin NippelBackup:
Proton and Helium Networks

