HIGHLIGHTS OF TELESCOPE ARRAY

DOUGLAS R BERGMAN

FOR THE TELESCOPE ARRAY COLLABORATION

TEVPA 2021

28 OCTOBER 2021

TELESCOPE ARRAY COLLABORATION

R.U. Abbasi^{1,2}, M. Abe³, T. Abu-Zayyad^{1,2}, M. Allen², Y. Arai⁴, R. Arimura⁴, E. Barcikowski², J.W. Belz², D.R. Bergman², S.A. Blake², I. Buckland², R. Cady², B.G. Cheon⁵, J. Chiba⁶, M. Chikawa⁷, T. Fujii⁸, K. Fujisue⁷, K. Fujita⁴, R. Fujiwara⁴, M. Fukushima⁷, R. Fukushima⁴, G. Furlich², R. Gonzalez², W. Hanlon², M. Hayashi⁹, N. Hayashida¹⁰, K. Hibino¹⁰, R. Higuchi⁷, K. Honda¹¹, D. Ikeda¹⁰, T. Inadomi¹², N. Inoue³, T. Ishii¹¹, H. Ito¹³, D. Ivanov², H. Iwakura¹², A. Iwasaki⁴, H.M. Jeong¹⁴, S. Jeong¹⁴, C.C.H. Jui², K. Kadota¹⁵, F. Kakimoto¹⁰, O. Kalashev¹⁶, K. Kasahara¹⁷, S. Kasami¹⁸, H. Kawai¹⁹, S. Kawakami⁴, S. Kawata³, K. Kawata⁷, I. Kharuk¹⁶, E. Kido¹³, H.B. Kim⁵, J.H. Kim², J.H. Kim², M.H. Kim¹⁴, S.W. Kim¹⁴, Y. Kimura⁴, S. Kishigami⁴, Y. Kubota¹², S. Kurisu¹², V. Kuzmin¹⁶, M. Kuznetsov^{16,20}, Y.J. Kwon²¹, K.H. Lee¹⁴, B. Lubsandorzhiev¹⁶, J.P. Lundquist^{2,22}, K. Machida¹¹, H. Matsumiya⁴, T. Matsuyama⁴, J.N. Matthews², R. Mayta⁴, M. Minamino⁴, K. Mukai¹¹, I. Myers², S. Nagataki¹³, K. Nakai⁴,
R. Nakamura¹², T. Nakamura²³, T. Nakamura¹², Y. Nakamura¹², A. Nakazawa¹², T. Nonaka⁷, H. Oda⁴, S. Ogio^{4,24}, M. Ohnishi⁷, H. Ohoka⁷, Y. Oku¹⁸, T. Okuda²⁵, Y. Omura⁴, M. Ono¹³, R. Onogi⁴, A. Oshima⁴, S. Ozawa²⁶, I.H. Park¹⁴, M. Potts², M.S. Pshirkov^{16,27}, J. Remington², D.C. Rodriguez², Y. Shibasaki¹², F. Shibata¹¹, N. Shibata¹⁸, T. Shibata⁷, H. Sako⁷, N. Sakurai⁴, K. Sano¹², K. Sato⁴, T. Seki¹², K. Sekino⁷, P.D. Shah², H. Sukita⁷, A. Takeja³, Y. Takagi⁴, Y. Takadisa⁴, M. Takamura⁶, B. Tsokokes², T.A. Stroman², T. Sukolas⁴, Y. Takadash⁴, M. Takamura⁶, B. Tsokokes⁷, R. Takeishi⁷, A. Taketa²⁹, M. Takita⁷, Y. Tameda¹⁸, H. Tanaka⁴, K. Tanaka³⁰, M. Tanaka³¹, Y. Tanoue⁴, S.B. Thomas², G.B. Thomson², P. Tinyakov^{16,20}, I. Tkache¹⁶, H. Tokuno³², T. Tomida¹

¹ Loyola University Chicago ² University of Utah ³ Saitama University ⁴ Osaka City University ⁵ Hanyang University ⁶ Tokyo University of Science ⁷ University of Tokyo (ICRR) ⁸ Kyoto University ⁹ Shinshu University ¹⁰ Kanagawa University ¹¹ University of Yamanashi ¹² Shinshu University (Inst. of Engineering) ¹³ RIKEN ¹⁴ Sungkyunkwan University ¹⁵ Tokyo City University ¹⁶ Institute for Nuclear Research of the Russian Academy of Sciences ¹⁷ Shibaura Institute of Technology ¹⁸ Osaka Electro-Communication University ¹⁹ Chiba University ²⁰ Université Libre de Bruxelles ²¹ Yonsei University ²² University of Nova Gorica ²³ Kochi University ²⁴ Osaka City University (Nambu Yoichiro Institute) ²⁵ Ritsumeikan University ²⁶ National Inst. for Information and Communications Technology, Tokyo ²⁷ Lomonosov Moscow State University ²⁸ Ulsan National Institute of Science and Technology ²⁹ University of Tokyo (Earthquake Inst.) ³⁰ Hiroshima City University ³¹ KEK ³² Tokyo Institute of Technology ³³ National Instit. for Quantum and Radiological Science and Technology ³⁴ CEICO, Institute of Physics, Czech Academy of Sciences ³⁵ Ewha Womans University

28 October 2021

- Telescope Array (since 11/2007)
 - Surface Detector Array
 - 507 Scintillator Counters
 - 1.2 km spacing
 - 3 m² area
 - 700 km²
 - Fluorescence Telescopes
 - 3 sites
 - 12–14 mirrors
 - 3°–31° elevation
 - Cover SD

- TA Low Energy (TALE)
 - Surface Detector infill array
 - Since 03/2018
 - 400 & 600-m spacing
 - Same SD design as TA
 - Fluorescence Telescopes
 - Since 09/2013
 - 10 mirrors (+ 14 from TA)
 - 31°–59° elevation

TeVPA 2021

• TA x 4

TeVPA 2021

- Expanded Surface Array
 - 2.08-km spacing
 - Similar SD design as TA
 - 257 of planed 500 deployed (since 11/2019)
- Fluorescence Telescopes
 - 4 mirrors in NE lobe (since 06/2019)
 - 8 mirrors in SE lobe (since 08/2020)

EVENT RECONSTRUCTION

- Use counter location and timing to locate shower core and direction
- Fit counter signal size to find lateral distribution
- Signal size at 800 m, S800, is the energy indicator

 $\eta(\theta) = 3.97 - 1.79 [\sec(\theta) - 1)$

EVENT RECONSTRUCTION

- Use counter location and timing to locate shower core and direction
- Fit counter signal size to find lateral distribution
- Signal size at 800 m, S800, is the energy indicator
- Use S800 and zenith angle to look up energy (from CORSIKAproduced table)
- Hybrid fluorescence provides energy scale: $E_{\text{final}} = E_{\text{TBL}}/1.27$

In [E(TA Hybrid) / E(TA SD)]

1 1.5

-1 -0.5 0 0.5

-1.5

EVENT RECONSTRUCTION

- In fluorescence we see the shower sweep across the mirror
- Reconstruct Shower-Detector
 Plane
- Fit time-vs-angle to get geometry (add in SD times for hybrid, giving much more lever arm for fit)
- Reconstruct size of shower vs depth

TAX4 HYBRID EXAMPLE EVENT

• Hybrid Analysis

- Surface detector event
- Fluorescence Telescope event
- Time-matched within 1 ms
- Very accurate event geometry
 - SDP-ground intersection
 - Time vs Angle fit with long lever arm

HIGHEST ENERGY EVENT SEEN IN A SURFACE DETECTOR

- Observed: 27 May 2021
- Zenith angle: ~30°
- S800: ~500

HIGHEST ENERGY EVENT SEEN IN A SURFACE DETECTOR

• TA Energy Spectrum (from 2019)

- TA Energy Spectrum (from 2019)
- TAx4 1-year spectrum superimposed

10

IASD2019

- TA Energy Spectrum (from 2019)
- TAx4 1-year spectrum superimposed

10

TASD2019

- TA Energy Spectrum (from 2019)
- TAx4 1-year spectrum superimposed

- TA Energy Spectrum (from 2019)
- TAx4 1-year spectrum superimposed
- With 1-year of (half of) the TAx4 expansion, can already corroborate higher GZK threshold

- There is a declination dependence in the TA SD spectrum
 - Difference of the cutoff energies of energy spectra
 - log(E/eV) = 19.64 ± 0.04 for lower dec. band (-16°-24.8°)
 - log(E/eV) = 19.84 ± 0.02 for higher dec. band (24.8°–90°)
 - The global significance of the difference is estimated to be 4.3^o

- Combine TA SD spectrum (11 years) with TALE FD monocular (22 months) to get CR spectrum covering 5 ordersof-magnitude
 - Knee: $\log_{10}(E/eV) \sim 15.5$ • LE ankle: $\log_{10}(E/eV) = 16.22(2)$ • 2nd Knee: $\log_{10}(E/eV) = 17.04(4)$
 - Ankle: $\log_{10}(E/eV) = 18.69(1)$
 - Cutoff: $\log_{10}(E/eV) = 19.81(3)$

THE INSTEP FEATURE

Combined fit of TASD, TA Monocular and HiRes Finds the instep feature (first seen by Auger) with 5.3σ significance

TeVPA 2021

Parameter	Auger	TA
γ_1	3.29 ± 0.02	3.23 ± 0.01
γ_2	2.51 ± 0.03	2.63 ± 0.02
γ_3	3.05 ± 0.05	2.92 ± 0.06
γ_4	5.1 ± 0.3	5.0 ± 0.4
$E_{\text{ankle}}/\text{EeV}$	5.0 ± 0.1	5.4 ± 0.1
$E_{\rm instep}/{\rm EeV}$	13 ± 1	18 ± 1
$E_{\rm cut}/{\rm EeV}$	46 ± 3	71 ± 3

COMPOSITION

- Detailed measurement of composition from 2 PeV to 2 EeV
 - Using TALE with Cherenkov-light dominated events
 - ApJ 909 (2021)178
- Fit to four species
 - Reduction in protons above the Knee
 - Getting heavier
- Elongation rate fit
 - Break at 160 PeV, 2nd Knee
 - Getting lighter above that

COMPOSITION

- TA SD composition: BDT analysis using 16 composition sensitive signals (12 years: 2008–2020)
 - Find light, unchanging composition above 1 EeV, with two different high-energy interaction models

TeVPA 2021

- The TA hot-spot with 12 years of data
 - 179 events with *E* > 57 EeV
 - 40 events in hot-spot, 25° top-hat, local 4.5σ significance, 3.2σ local

- The TA hot-spot with 12 years of data
 - 179 events with *E* > 57 EeV
 - 40 events in hot-spot, 25° top-hat, local 4.5σ significance, 3.2σ local
- The original brightness (ApJ 790 (2014) L21) seems to not be sustained
 - But still significantly higher than background
 - Growth rate consistent with linear

28 October 2021

- At lower energies (above 40 EeV) see a new excess
 - In the direction of the Perseus-Pisces Supercluster

- At lower energies (above 40 EeV) see a new excess
 - In the direction of the Perseus-Pisces Supercluster
- Significant excess at energies log₁₀ E/eV > 19.4, 19.5, and 19.6
 - 4.4 σ , 4.2 σ , and 4.0 σ , resp.
- Chance that excess within 9° of supercluster center is about 3.5σ

- At energies above 8.8 EeV
 - Look for dipole (a la Auger)
 - TA 12-yr result :
 - $r_{\alpha} \simeq 3.1\%; \phi_{\alpha} \simeq 134^{\circ}$
 - Auger 2017 result : $r_{\alpha} \simeq 4.7\%; \phi_{\alpha} \simeq 100^{\circ}$

SUMMARY

- Results from TA, the largest cosmic-ray observatory in the Northern Hemisphere, including TALE and TAx4
- Spectrum
 - TAx4 SD has begun to measure, and has enough events to make a meaningful contribution to the TA spectrum above 10 EeV
 - TA finds a significant difference in its own spectra above and below 25° declination (agrees with Auger in overlapping region)
 - Spectrum measurements over 5.5 orders-of-magnitude in energy
 - Observation of the "instep" feature
- Composition
 - Light-heavy-light pattern in PeV energy range using TALE-Cherenkov
 - Light and steady in EeV using TA SD with machine-learning BDT analysis
- Anisotropy
 - Hotspot persists, but significance not increasing very quickly
 - New significant excess at slightly lower energy in conjunction with the Perseus-Pisces Supercluster
 - Found while looking for difference in TA and Auger energy spectra
 - See a similar dipole to the Auger published result
- There's the NICHE array to talk about too, but no time...

NICHECHE ARRAY

N

TeVPA 2021

• NICHE works with TALE as a non-imaging and imaging Cherenkov hybrid detector

- Can show that the time width of NICHE signal at a given distance from the shower core depends on how far it is to the shower maximum
 - Shower core position from TALE reconstruction is uncertain at the 100-m level (smears left-right)
 - X_{max}, D_{max} comes from TALE reconstruction and geometry
 - Take average over 100-m bins, require 40 events

- Can show that the time width of NICHE signal at a given distance from the shower core depends on how far it is to the shower maximum
 - Shower core position from TALE reconstruction is uncertain at the 100-m level (smears left-right)
 - X_{max}, D_{max} comes from TALE reconstruction and geometry
 - Take average over 100-m bins, require 40 events

- Can show that the time width of NICHE signal at a given distance from the shower core depends on how far it is to the shower maximum
 - Shower core position from TALE reconstruction is uncertain at the 100-m level (smears left-right)
 - X_{max}, D_{max} comes from TALE reconstruction and geometry
 - Take average over 100-m bins, require 40 events
- Can now use width in NICHE as a composition measure

