HIGHLIGHTS OF TELESCOPE ARRAY
dOUGLAS R BERGMAN
FOR THE TELESCOPE ARRAY COLLABORATION TEVPA 2021 28 OCTOBER 2021

TELESCOPE ARRAY COLLABORATION

R.U. Abbasi ${ }^{1,2}$, M. Abe ${ }^{3}$, T. Abu-Zayyad ${ }^{1,2}$, M. Allen ${ }^{2}$, Y. Arai ${ }^{4}$, R. Arimura ${ }^{4}$, E. Barcikowski ${ }^{2}$, J.W. Belz ${ }^{2}$, D.R. Bergman ${ }^{2}$, S.A. Blake ${ }^{2}$, I. Buckland ${ }^{2}$, R. Cady ${ }^{2}$, B.G. Cheon ${ }^{5}$, J. Chiba ${ }^{6}$, M. Chikawa ${ }^{7}$, T. Fujii ${ }^{8}$, K. Fujisue ${ }^{7}$, K. Fujita ${ }^{4}$, R. Fujiwara ${ }^{4}$, M. Fukushima ${ }^{7}$, R. Fukushima ${ }^{4}$, G. Furlich ${ }^{2}$, R. Gonzalez ${ }^{2}$, W. Hanlon ${ }^{2}$, M. Hayashi ${ }^{9}$, N. Hayashida ${ }^{10}$, K. Hibino ${ }^{10}$, R. Higuchi ${ }^{7}$, K. Honda ${ }^{11}$, D. Ikeda ${ }^{10}$, T. Inadomi ${ }^{12}$, N. Inoue ${ }^{3}$, T. Ishii ${ }^{11}$, H. Ito ${ }^{13}$, D. Ivanov ${ }^{2}$, H. Iwakura ${ }^{12}$, A. Iwasaki ${ }^{4}$, H.M. Jeong ${ }^{14}$, S. Jeong ${ }^{14}$, C.C.H. Jui ${ }^{2}$, K. Kadota ${ }^{15}$, F. Kakimoto ${ }^{10}$, O. Kalashev ${ }^{16}$, K. Kasahara ${ }^{17}$, S. Kasami ${ }^{18}$,
H. Kawai ${ }^{19}$, S. Kawakami ${ }^{4}$, S. Kawana ${ }^{3}$, K. Kawata ${ }^{7}$, I. Kharuk ${ }^{16}$, E. Kido ${ }^{13}$, H.B. Kim ${ }^{5}$, J.H. Kim ${ }^{2}$, J.H. Kim ${ }^{2}$, M.H. Kim ${ }^{14}$, S.W. Kim ${ }^{14}$, Y. Kimura ${ }^{4}$, S. Kishigami ${ }^{4}$, Y. Kubota ${ }^{12}$, S. Kurisu ${ }^{12}$, V. Kuzmin ${ }^{16}$, M. Kuznetsov ${ }^{16,20}$, Y.J. Kwon ${ }^{21}$, K.H. Lee ${ }^{14}$, B. Lubsandorzhiev ${ }^{16}$, J.P. Lundquist ${ }^{2}$,22, ${ }^{\text {, }}$ K. Machida ${ }^{11}$, H. Matsumiya ${ }^{4}$, T. Matsuyama ${ }^{4}$, J.N. Matthews ${ }^{2}$, R. Mayta ${ }^{4}$, M. Minamino ${ }^{4}$, K. Mukai ${ }^{11}$, I. Myers ${ }^{2}$, S. Nagataki ${ }^{13}$, K. Nakai ${ }^{4}$, R. Nakamura ${ }^{12}$, T. Nakamura ${ }^{23}$, T. Nakamura ${ }^{12}$, Y. Nakamura ${ }^{12}$, A. Nakazawa ${ }^{12}$, T. Nonaka ${ }^{7}$, H. Oda ${ }^{4}$, S. Ogio ${ }^{4}, 24$, M. Ohnishi ${ }^{7}$, H. Ohoka ${ }^{7}$, Y. Oku ${ }^{18}$,
T. Okuda ${ }^{25}$, Y. Omura ${ }^{4}$, M. Ono ${ }^{13}$, R. Onogi ${ }^{4}$, A. Oshima ${ }^{4}$, S. Ozawa ${ }^{26}$, I.H. Park ${ }^{14}$, M. Potts ${ }^{2}$, M.S. Pshirkov ${ }^{16,27}$, J. Remington ${ }^{2}$, D.C. Rodriguez ${ }^{2}$, G.I. Rubtsov ${ }^{16}$, D. Ryu ${ }^{28}$, H. Sagawa ${ }^{7}$, R. Sahara ${ }^{4}$, Y. Saito ${ }^{12}$, N. Sakaki ${ }^{7}$, T. Sako ${ }^{7}$, N. Sakurai ${ }^{4}$, K. Sano ${ }^{12}$, K. Sato ${ }^{4}$, T. Seki ${ }^{12}$, K. Sekino ${ }^{7}$, P.D. Shah ${ }^{2}$
Y. Shibasaki ${ }^{12}$, F. Shibata ${ }^{11}$, N. Shibata ${ }^{18}$, T. Shibata ${ }^{7}$, H. Shimodaira ${ }^{7}$, B.K. Shin ${ }^{28}$, H.S. Shin ${ }^{7}$, D. Shinto ${ }^{18}$, J.D. Smith ${ }^{2}$, P. Sokolsky ${ }^{2}$, N. Sone ${ }^{12}$,
B.T. Stokes ${ }^{2}$, T.A. Stroman ${ }^{2}$, T. Suzawa ${ }^{3}$, Y. Takagi ${ }^{4}$, Y. Takahashi ${ }^{4}$, M. Takamura ${ }^{6}$, M. Takeda ${ }^{7}$, R. Takeishi ${ }^{7}$, A. Taketa ${ }^{29}$, M. Takita ${ }^{7}$, Y. Tameda ${ }^{18}$,
H. Tanaka ${ }^{4}$, K. Tanaka ${ }^{30}$, M. Tanaka ${ }^{31}$, Y. Tanoue ${ }^{4}$, S.B. Thomas ${ }^{2}$, G.B. Thomson ${ }^{2}$, P. Tinyakov ${ }^{16,20}$, I. Tkachev ${ }^{16}$, H. Tokuno ${ }^{32}$, T. Tomida ${ }^{12}$, S. Troitsky ${ }^{16}$, R. Tsuda ${ }^{4}$, Y. Tsunesada ${ }^{4,24}$, Y. Uchihori ${ }^{33}$, S. Udo ${ }^{10}$, T. Uehama ${ }^{12}$, F. Urban ${ }^{34}$, T. Wong ${ }^{2}$, K. Yada ${ }^{7}$, M. Yamamoto ${ }^{12}$, K. Yamazaki ${ }^{10}$, J. Yang ${ }^{35}$, K. Yashiro ${ }^{6}$, F. Yoshida ${ }^{18}$, Y. Yoshioka ${ }^{12}$, Y. Zhezher ${ }^{7}{ }^{\text {, }}$, , and Z. Zundel ${ }^{2}$
${ }^{1}$ Loyola University Chicago ${ }^{2}$ University of Utah ${ }^{3}$ Saitama University ${ }^{4}$ Osaka City University ${ }^{5}$ Hanyang University ${ }^{6}$ Tokyo University of Science ${ }^{7}$ University of Tokyo (ICRR) ${ }^{8}$ Kyoto University ${ }^{9}$ Shinshu University ${ }^{10}$ Kanagawa University ${ }^{11}$ University of Yamanashi ${ }^{12}$ Shinshu University (Inst. of Engineering) ${ }^{13}$ RIKEN ${ }^{14}$ Sungkyunkwan University ${ }^{15}$ Tokyo City University ${ }^{16}$ Institute for Nuclear Research of the Russian Academy of Sciences ${ }^{17}$ Shibaura Institute of Technology ${ }^{18}$ Osaka Electro-Communication University ${ }^{19}$ Chiba University ${ }^{20}$ Université Libre de Bruxelles ${ }^{21}$ Yonsei University ${ }^{22}$

University of Nova Gorica ${ }^{23}$ Kochi University ${ }^{24}$ Osaka City University (Nambu Yoichiro Institute) ${ }^{25}$ Ritsumeikan University ${ }^{26}$ National Inst. for Information and Communications Technology, Tokyo ${ }^{27}$ Lomonosov Moscow State University ${ }^{28}$ Ulsan National Institute of Science and Technology 29 University of Tokyo (Earthquake Inst.) ${ }^{30}$ Hiroshima City University ${ }^{31}$ KEK ${ }^{32}$ Tokyo Institute of Technology ${ }^{33}$ National Instit. for Quantum and Radiological Science and Technology ${ }^{34}$ CEICO, Institute of Physics, Czech Academy of Sciences ${ }^{35}$ Ewha Womans University

TELESCOPE ARRAY

TELESCOPE ARRAY

- Telescope Array (since $11 / 2007$)
- Surface Detector Array
- 507 Scintillator Counters
- 1.2 km spacing
- $3 \mathrm{~m}^{2}$ area
- $700 \mathrm{~km}^{2}$
- Fluorescence Telescopes
- 3 sites
- 12-14 mirrors
- $3^{\circ}-31^{\circ}$ elevation
- Cover SD

TELESCOPE ARRAY

- TA Low Energy (TALE)
- Surface Detector infill array
- Since $03 / 2018$
- 400 \& $600-\mathrm{m}$ spacing
- Same SD design as TA
- Fluorescence Telescopes
- Since 09/2013
- 10 mirrors (+ 14 from TA)
- $31^{\circ}-59^{\circ}$ elevation

TELESCOPE ARRAY

- TAx 4
- Expanded Surface Array
- 2.08-km spacing
- Similar SD design as TA
- 257 of planed 500 deployed (since 11/2019)
- Fluorescence Telescopes
- 4 mirrors in NE lobe (since 06/2019)
- 8 mirrors in SE lobe (since 08/2020)

EVENT RECONSTRUCTION

- Use counter location and timing to locate shower core and direction
- Fit counter signal size to find lateral distribution
- Signal size at $800 \mathrm{~m}, \mathrm{~S} 800$, is the energy indicator

EVENT RECONSTRUCTION

- Use counter location and timing to locate shower core and direction
- Fit counter signal size to find lateral distribution
- Signal size at $800 \mathrm{~m}, \mathrm{S800}$, is the energy indicator
- Use S800 and zenith angle to look up energy (from CORSIKAproduced table)
- Hybrid fluorescence provides energy scale: $E_{\text {final }}=E_{\text {TBI }} / 1.27$

TeVPA 2021

EVENT RECONSTRUCTION

- In fluorescence we see the shower sweep across the mirror
- Reconstruct Shower-Detector Plane
- Fit time-vs-angle to get geometry (add in SD times for hybrid, giving much more lever arm for fit)
- Reconstruct size of shower vs depth

TAX4 HYBRID EXAMPLE EVENT

- Hybrid Analysis
- Surface detector event
- Fluorescence Telescope event
- Time-matched within 1 ms
- Very accurate event geometry
- SDP-ground intersection
- Time vs Angle fit with long lever arm

HIGHEST ENERGY EVENT SEEN IN A SURFACE DETECTOR

- Observed: 27 May 2021
- Zenith angle: ~30
- S800: ~500

HIGHEST ENERGY EVENT SEEN IN A SURFACE DETECTOR

ENERGY SPECTRUM

ENERGY SPECTRUM

- TA Energy Spectrum (from 2019)

ENERGY SPECTRUM

- TA Energy Spectrum (from 2019)
- TAx4 1-year spectrum superimposed

ENERGY SPECTRUM

- TA Energy Spectrum (from 2019)
- TAx4 1-year spectrum superimposed

ENERGY SPECTRUM

- TA Energy Spectrum (from 2019)
- TAx4 1-year spectrum superimposed

ENERGY SPECTRUM

- TA Energy Spectrum (from 2019)
- TAx4 1-year spectrum superimposed
- With 1-year of (half of) the TAx4 expansion, can already corroborate higher GZK threshold

ENERGY SPECTRUM

- There is a declination dependence in the TA SD spectrum
- Difference of the cutoff energies of energy spectra
- $\log (\mathrm{E} / \mathrm{eV})=19.64 \pm 0.04$ for lower dec. band (-16 ${ }^{\circ}-24.89$
- $\log (E / \mathrm{eV})=19.84 \pm 0.02$ for higher dec. band ($24.8^{\circ}-90$)

ENERGY SPECTRUM

- Combine TA SD spectrum (11 years) with TALE FD monocular (22 months) to get CR spectrum covering 5 orders-of-magnitude
- Knee:
$\log _{10}(E / \mathrm{eV}) \sim 15.5$
- LE ankle:
$\log _{10}(E / \mathrm{eV})=16.22(2)$
- $2^{\text {nd }}$ Knee: $\quad \log _{10}(E / \mathrm{eV})=17.04(4)$
- Ankle: $\log _{10}(E / \mathrm{eV})=18.69(1)$
- Cutoff: $\log _{10}(E / \mathrm{eV})=19.81(3)$

THE INSTEP FEATURE

HiRes-I (2008)

Combined fit of TASD, TA Monocular and HiRes Finds the instep feature (first seen by Auger) with 5.3σ significance

Parameter	Auger	TA
γ_{1}	3.29 ± 0.02	3.23 ± 0.01
γ_{2}	2.51 ± 0.03	2.63 ± 0.02
γ_{3}	3.05 ± 0.05	2.92 ± 0.06
γ_{4}	5.1 ± 0.3	5.0 ± 0.4
$E_{\text {ankle }} / \mathrm{EeV}$	5.0 ± 0.1	5.4 ± 0.1
$E_{\text {instep }} / \mathrm{EeV}$	13 ± 1	18 ± 1
$E_{\text {cut }} / \mathrm{EeV}$	46 ± 3	71 ± 3

COMPOSITION

- Detailed measurement of composition from 2 PeV to 2 EeV
- Using TALE with Cherenkov-light dominated events
- ApJ 909 (2021)178
- Fit to four species
- Reduction in protons above the Knee
- Getting heavier
- Elongation rate fit
- Break at $160 \mathrm{PeV}, 2^{\text {nd }}$ Knee
- Getting lighter above that

COMPOSITION

- TA SD composition: BDT analysis using 16 composition sensitive signals (12 years: 2008-2020)
- Find light, unchanging composition above 1 EeV , with two different high-energy interaction models

ANISOTROPY

- The TA hot-spot with 12 years of data
- 179 events with $E>57$ EeV
- 40 events in hot-spot, 25° top-hat, local 4.5σ significance, 3.2σ local

ANISOTROPY

- The TA hot-spot with 12 years of data
- 179 events with $E>57 \mathrm{EeV}$
- 40 events in hot-spot, 25° top-hat, local 4.5σ significance, 3.2σ local
- The original brightness (ApJ 790 (2014) L21) seems to not be sustained
- But still significantly higher than background
- Growth rate consistent with linear

ANISOTROPY

- At lower energies (above 40 EeV) see a new excess
- In the direction of the PerseusPisces Supercluster

ANISOTROPY

- At lower energies (above 40 EeV) see a new excess
- In the direction of the PerseusPisces Supercluster
- Significant excess at energies $\log _{10} E / e V>19.4,19.5$, and 19.6
- $4.4 \sigma, 4.2 \sigma$, and 4.0σ, resp.
- Chance that excess within 9° of supercluster center is about 3.5б

ANISOTROPY

- At energies above 8.8 EeV
- Look for dipole (a la Auger)
- TA 12-yr result :

$$
r_{\alpha} \simeq 3.1 \% ; \phi_{\alpha} \simeq 134^{\circ}
$$

- Auger 2017 result :

$$
r_{\alpha} \simeq 4.7 \% ; \phi_{\alpha} \simeq 100^{\circ}
$$

SUMMARY

- Results from TA, the largest cosmic-ray observatory in the Northern Hemisphere, including TALE and TAx4
- Spectrum
- TAx4 SD has begun to measure, and has enough events to make a meaningful contribution to the TA spectrum above 10 EeV
- TA finds a significant difference in its own spectra above and below 25° declination (agrees with Auger in overlapping region)
- Spectrum measurements over 5.5 orders-of-magnitude in energy
- Observation of the "instep" feature
- Composition
- Light-heavy-light pattern in PeV energy range using TALE-Cherenkov
- Light and steady in EeV using TA SD with machine-learning BDT analysis
- Anisotropy
- Hotspot persists, but significance not increasing very quickly
- New significant excess at slightly lower energy in conjunction with the Perseus-Pisces Supercluster
- Found while looking for difference in TA and Auger energy spectra
- See a similar dipole to the Auger published result
- There's the NICHE array to talk about too, but no time...

NICHE ARRAY

NICHE ARRAY

- NICHE works with TALE as a non-imaging and imaging Cherenkov hybrid detector

NICHE ARRAY

- Can show that the time width of NICHE signal at a given distance from the shower core depends on how far it is to the shower maximum
- Shower core position from TALE reconstruction is uncertain at the 100-m level (smears left-right)
- $X_{\max }, D_{\max }$ comes from TALE reconstruction and geometry
- Take average over 100 -m bins, require 40 events

NICHE ARRAY

- Can show that the time width of NICHE signal at a given distance from the shower core depends on how far it is to the shower maximum
- Shower core position from TALE reconstruction is uncertain at the $100-\mathrm{m}$ level (smears left-right)
- $X_{\max }, D_{\max }$ comes from TALE reconstruction and geometry
- Take average over $100-\mathrm{m}$ bins, require 40 events

NICHE ARRAY

- Can show that the time width of NICHE signal at a given distance from the shower core depends on how far it is to the shower maximum
- Shower core position from TALE reconstruction is uncertain at the $100-\mathrm{m}$ level (smears left-right)
- $X_{\max }, D_{\max }$ comes from TALE reconstruction and geometry
- Take average over $100-\mathrm{m}$ bins, require 40 events
- Can now use width in NICHE as a composition measure

