G GRAN SASSO
SCIENCE INSTITUTE

H I SCHOOL OF ADVANCED STUDIES

THE TOUGH ROAD TO PEV

Acceleration of the highest rigidity Galactic cosmic rays

Pasquale Blasi
Gran Sasso Science Institute

TeVPA 2021 - Chengdu, Oct. 25-29 2021



G GRAN SASSO
SCIENCE INSTITUTE
I SCHOOL OF ADVANCED STUDIES

OUTLINE

(] GENERAL CONCEPTS
] ACCELERATION IN SNRS
] ACCELERATION IN STELLAR WIND CLUSTERS

[ ] ESCAPE OF HE PARTICLES AROUND THE SOURCES



AN INTRINSICALLY MULTI-MESSENGER
AND MULTIFREQUENCY FIELD

From afar the spectrum looks like a power
law

Broken power laws more interesting
(scale->physics)

After knee and ankle, first evidence of scales
also in the spectra of individual elements

Substantial change in mass composition at
the knee —> most likely it is the energy
where Galactic CR end (in rigidity)

Big surprises from secondaries and
antimatter

(GeV cmsr's™)
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Potential Sources of Galactic CR

The energy density of Cosmic Rays at the position of the Earth is about 0.2 eV/cn3 at E>few GeV - how do we refill it?

KNOWN FROM B/C

SN Type IA: Energetics 1051 erg Rate 1/100 years Required Efficiency 6%
SN Type II. Energetics 1051 erg Rate 1/30 years Required Efficiency 2%
SN Type II* (very luminous core collapse): Energetics 1052 erg Rate 1/10000 years Required Efficiency 50%

Stellar Clusters: Typical luminosity 1037-1038 erg/s - if efficiency 10% about few thousand clusters required in the Galaxy
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Stellar Clusters: Typical luminosity 1037-1038 erg/s - if efficiency 10% about few thousand clusters required in the Galaxy
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Potential Sources of Galactic CR

The energy density of Cosmic Rays at the position of the Earth is about 0.2 eV/cn3 at E>few GeV - how do we refill it?

KNOWN FROM B/C

Type IA: Energetms 051 erg Rate 1/100 years Required Efficiency 6%

\

SN Type II: Energetics 1051 % rg Rate 1/30 years Required Efficiency 2%

N SN Type II* very lumpitfous core collapse): Energetics 1052 erg  Rate 1/10000 years Required Efficiency 50%
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Stellar Clusters: Typical l inosity 1037-1038 erg/s - if efficiency 10% about few thousand clusters required in the Galaxy
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" PARTICLE ACCELERATION IN SNRs
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FREE EXPANSION VELOCITY:V, =
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THE EXPANSION SPEED DROPS DURING THE SEDOV-TAYLOR PHASE BUT
THE MACH NUMBER STAYS >10-100

A STRONG COLLISIONLESS SHOCK WAVE 1S GENERATED



DIFFUSIVE SHOCK ACCELERATION
Test Particle Approach

@ Diffusion of charged particles back and forth
across the shock leads to:

AE 4
- ~ 70

E

@ POWER LAW SPECTRUM (only depends on
compression factor)

@ FOR STRONG SHOCKS (Mach>>1): p+ (E2 at
relativistic E)

@ INDEPENDENT OF MICRO-PHYSICS (e.g. THE
DIFFUSION COEFFICIENT)
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Krymsky 1977
| .Bell 1978
~* Blandford & Ostriker 1978 *

THE EFFICIENCY REQUIRED PER SNR ~1-10%: TEST PARTICLES?
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MORE THAN JUST TEST PARTICLES

* The spectrum E-2is energy divergent —> need to account for particle pressure

* The maximum energy for test particles is ridiculously low

IF TO ASSUME THAT AT THE SHOCK PARTICLES DIFFUSE AS IN THE ISM (see B/C ratio) THEN:

8D(E)
D(E) ~ 3 x 10% (E/10GeV)"? cm?/s wlp  7.(E) =

= TSed
Vg eaoyv

—_— e ——— e —— - - E—— e I—— — e \‘
" THE DIFFUSION COEFFICIENT IN THE ACCELERATION REGION MUST BE MUCH
SMALLER THAN THE ONE IN THE INTERSTELLAR MEDIUM - CAN THIS i
PHENOMENON BE DUE TO THE ACCELERATED PARTICLES THEMSELVES? )

=— — — — = = =



| —
MORE THAN JUST TEST PARTICLES

EVEN ASSUMING THE BEST POSSIBLE CONDITIONS FOR PARTICLE SCATTERING (BOHM DIFFUSION) ONE CAN
SEE THAT

1 Ec 1

N T
N Sedov
3 eBShOCk Vs

IF ONE WANTS TO USE THESE SHOCK TO ACCELERATE TO PeV ENERGIES THE REQUIREMENT IS:

B, .~ IOOBGalaxy

shoc

e —_ =——— Jma— S == — S — — e

| THE MAGNETlC FlELD AT THE SHOCK MUST BE AMPLlFlED BY ABOUT A FACT OR 100

|

|
NOTICE THAT IN ORDER TO AFFECT THE ACCELERATION TIME THIS AMPLIFICATION MUST TAKE PLACE “
UPSTREAM OF THE SHOCK WHERE ONLY COSMIC RAYS CAN REACH i‘

— e o B —— e — — —_— = S - B S —
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X-RAY FILAMENTS

-~

Virtually all young SNRs have thin X-ray filaments

Non-thermal synchrotron emission of high energy
electrons accelerated at the shock
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A HISTORY OF CR INDUCED B AMPLIFICATION

@ALREADY IN THE ORIGINAL BELL (1978) PAPERS IT WAS RECOGNIZED THAT MAGNETIC FIELD
AMPLIFICATION IS NEEDED FOR DSA TO WORK TO INTERESTING ENERGIES

@LAGAGE AND CESARSKY (1983) DISCUSSED THE EFFECT OF THE RESONANT STREAMING
INSTABILITY —> Emax~10-100 TEV AT MOST

@A NON-RESONANT BRANCH OF THE STREAMING INSTABILITY WAS DISCOVERED BY BELL
(2004,2005) WITH AN MHD APPROACH AND CONFIRMED IN KINETIC APPROACHES (AMATO & PB
2009)

@SEVERAL AUTHORS INVESTIGATED THE EFFECT OF THIS INSTABILITY ON THE MAXIMUM
ENERGY (SCHURE AND BELL 2013, 2014, BELL+ 2013, CARDILLO+ 2015, CRISTOFARI+ 2020,2021)
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CURRENT DRlVEN lNSTABlLlTY (Bell 2004)

/ THE ACCELERATING PARTICLES MAKE A POSITIVE CURRENT
| MOVING IN THE UPSTREAM

Negative

Current IT IS COMPENSATED BY A NEGATIVE CURRENT MADE OF
N 1 PLASMA ELECTRONS MOVING WITH RESPECT TO IONS

\\ THE SYSTEM OF THESE TWO CURRENTS IS UNSTABLE ON |
\VERY SMALL SPATIAL SCALES )

——g—— B — ———— — —_— _ _ — S _ _ SR _

|9 .
W,
v

¥ Accelerated *
Particles

THE INSTABILITY GROWS IF

» LITTLE SCATTERING

IT CAN BE EASILY SHOWN THAT kpnax>>1/Larmor




E NS Srmure
EASY WAY TO SATURATION OF GROWTH
The current exerts a force of the background plasma

d 1
)\ CURRENT p_v L e
C

which translates into a plasma displacement:

Jor 6B(0)
P Viraz

Ax ~ emp(’Ymaazt)

which stretches the magnetic field line by the same amount...
The saturation takes place when the displacement equals the Larmor radius of the particles in the field 8B ... imposing
this condition leads to:

532 gC’R QUS

specialized to a strong shock and a spectrum E-2
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MAGNETIC BOOTSTRAP

Particles must escape for the Maximum Energy to increase

DOWNSTREAM UPSTREAM o wae conire

:J

ylo/s

Bell & Schure 2013 ' . == S
Cardillo, Amato & PB 2015 Caprioli & Spitkovsky 2013
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MAGNETIC BOOTSTRAP

Particles must escape for the Maximum Energy to increase
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MAGNETIC BOOTSTRAP
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Cristofari, PB & Amato 2020

Egy [10°! erg]

T B T T/ B T/ A L 100 10!
Time kyr] Mej Mo
IZ THE HIGHEST ENERGIES ARE REACHED AT VERY EARLY EVOLUTIONARY STAGES! (Implications for gamma ray observations!)

M ..BUT THE FLUX CONTRIBUTED IN THOSE STAGES IS LOW, AND IN FACT THIS CORRESPONDS TO THE VERY STEEP PART OF
THE SPECTRA RELEASED INTO THE ISM

M FOR CORE COLLAPSE SNR THE TEMPORAL EVOLUTION OF THE MAXIMUM ENERGY IS IN GENERAL RATHER COMPLEX

M THE EFFECTIVE Emax IS THE ONE CORRESPONDING TO THE BEGINNING OF THE SEDOV-TAYLOR PHASE (vertical lines)
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SNRs as PeVATRONS?

Cristofari, PB & Caprioli 2021, Cristofari, PB & Amato 2020
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MTHE SPECTRUM RELEASED INTO THE ISM IS THE SUM OF CR ESCAPING FROM UPSTREAM AND THE ONES
TRAPPED DOWNSTREAM (COMPLEX SPECTRAL SHAPES)

M THE EFFECTIVE MAX ENERGY FOR IA AND II IS <100 TEV
MPEVATRONS ONLY FROM EXTREMELY POWERFUL AND RARE SUPERNOVA REMNANTS

M EITHER WAY, THE SUPPRESSION IS NOT EXPONENTIAL!!!
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" ISSUES WITH SPECTRA INSIDE SNR

1.8 §cr=0.20 a SNR _

[ . £=0.10 o Candidate _
1.6 ---8§xr=0.01 Cut—off _

: % ] L g SNR o Candidate Cut—off
1.4 | | 1 1 | L

)% 4 2 s 3 ;

10 10 10 10 10° 10 107 10° Caprioli 2011
Age [yr] Age [W] p

BOTH GAMMA RAY OBSERVATIONS AND CR TRANSPORT SUGGEST THAT THE SPECTRUM CONTRIBUTED BY SNR IS
STEEPER THAN E-2 BUT THIS SEEMS INCOMPATIBLE WITH THEORETICAL EXPECTATIONS!

THESE SUBTLE FEATURES ARE SENSITIVE TO THE MICROPHYSICS...
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POSTCURSORS

[ 1 THE ACTION OF COSMIC RAYS IS IN GENERAL OF INCREASING THE COMPRESSION FACTOR AT THE SHOCK DUE TO THE
CHANGE OF ADIABATIC INDEX (AND OTHER EFFECTS, PRECURSOR) —> SPECTRUM SHOULD BECOME HARDER THAN
STANDARD DSA

D HOWEVER, THE AMPLIFICATION OF THE MAGNETIC FIELD MAKES ANOTHER EFFECT APPEAR:

'THE VELOCITY OF THE WAVES UPSTREAM IS U,- W, = U,

THE WAVES DOWNSTREAM ARE SEEN IN SIMULATIONS TO MOVE IN THE SAME
DIRECTION AS THE PLASMA, WITH APPROXIMATELY THE ALFVEN SPEED IN
THE AMPLIFIED FIELD (POSTCURSOR)

_ Caprioli, Haggerty & PB2020

| THE SPECTRUM BECOMES STEEPER

Ea—— P — — e
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MANY ACCELERATION PROCESSES MAY BE AT WORK

YOUNG STELLAR CLUSTERS (no SNRS)
4+ C(Collision Of winds |[Reimer, Pohl, Reimer (2006); Bykov, Gladilin & Osipov (2013); Vieu, Gabici & Tatischett (2020)]
4 Termination shock of individual stars in the cluster

4+ DSA at the termination shock of the collective wind [Morlino, PB, Peretti & Cristofari 2021)

SUPERBUBBLES WITH WINDS AND SNR EXPLOSIONS
4 DSA at shocks of individual SNR (large turbulence in the cluster) [Parizot et al. 2004]

4 Acceleration at multiple shocks

4 Acceleration by turbulence and multiple shocks [Bykov & Toptygin 1993, Parizot et al. 2004; Ferrand &

Markowith 2010, Vieu, Gabici & Tatischeff ICRC 2021]
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@ THE TYPICAL LUMINOSITY OF A SC IS Lw=(1/2)MporVw?2~1038 erg/s

WHY STAR CLUSTER WINDS?

@ IN CRS THE ABUNDANCE OF 22Ne IS ABOUT § TIMES SOLAR AND THE WINDS OF MASSIVE
STARS ARE RICH IN 22Ne

@ COLLISIONS OF STELLAR WINDS IN THE COMPACT CORE (~1000 STARS) INJECTS
TURBULENCE IN THE SYSTEM, USEFUL FOR CR ACCELERATION

@ SEVERAL STAR CLUSTERS ARE BEING DETECTED IN GAMMA RAYS UP TO HUNDREDS OF TEV

@ THE EXPECTED TOPOLOGY OF THE ACCELERATION REGION SEEMS TO BE IDEAL FOR CR
ACCELERATION
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DYNAMICS OF A STAR CLUSTER CAVITY

Shocked stellar wind

Termination
shock /

Morlino, PB, Peretti & Cristofari, 2021

THE COLLECTIVE WIND OF THE STAR CLUSTER EXCAVATES A CAVITY IN THE ISM,

1/5,1/5.3/5
Ry (1) =174 p7 P L)
WITH A SIZE OF ~

DEVELOPS AT

AND A TERMINATION SHOCK

3/10 1/10_-3/10 2/5
s Pr Ijg PC

THE STRUCTURE IS QUASI-STATIONARY WITH THE FORWARD SHOCK VERY SLOWLY
MOVING OUTWARD.

AT THE TERMINATION SHOCK, THE WIND OF THE STAR GETS SLOWED DOWN AND
HEATED UP.

= —— —

B . — _ __ p— — —

( — R s - [ — _— —_—

AT THE TERMINATION SHOCK DIFFUSIVE PARTICLE ACCELERATION i
! TAKES PLACE, BUT IN A CONFIGURATION THAT IS PRETTY DIFFERENT ;
i FROM THAT OF SNR j

— — — JE— __
\ — ——— ——— —— ——— E——— = — — —_— —
N\ e ————  — e _—— — e — _ pum————— — = .
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DSA AT THE TERMINATION SHOCK
AN

Shocked stellar wind

Termination
shock /

u)

ESCAPE OCCURS AT §
| THE OUTER BOUNDARY }6
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'THE MAXIMUM ENERGY

Log Maximum Momentum

7 ACCELERATION TO PEV FOR LUMINOUS STAR
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KRACHNAN TURBULENCE
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GYGNUS COCOON GAMMA RAYS

¢ PARTICLE ACCELERATION IN CYGNUS CAN LEAD TO VHE
BUT AT LEAST FOR KRACHNAN TURBULENCE THIS REQUIRES
HIGH LUMINOSITY

€ THE DATA OF HAWC ARE ALL IN THE CUTOFF REGION -
BEWARE TO CLAIM THE EXISTENCE OF A SLOPE AND A
PEVATRON

€ THE MORPHOLOGY ADDS INFORMATION TO THE ORIGIN OF
THE TURBULENCE AND THE GAS DISTRIBUTION

¢ UPCOMING LHAASO DATA WILL SHED LIGHT ON THE
HIGH ENERGY BEHAVIOUR AND HELP DISCRIMINATING THE
TYPE OF TURBULENCE OR THE PRESENCE OF
ACCELERATORS INSIDE CYGNUS COCOON
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REDUCED DIFFUSIVITY AROUND SOURCES

HAWC has recently detected regions of extended gamma ray emission around
selected PWNe, in the >TeV energy region, suggesting that the diffusion
coefficient in these regions is ~1/100 of the Galactic one [Abeysekara+ 2017]

g oime v Westeriund 2
" & N . :

HESS observations of several star clusters have also shown extended regions
(~100 pc) with TeV gamma ray emission, with inferred D(E)<< than the Galactic
one [Aharonian+ 2018]

Evidence from gamma ray observations of gamma ray emission from molecular
clouds positioned at different distances from SNRs (for instance W28) that the
diffusion coefficient is ~1/40 of the Galactic one [Gabici+ 2010]




a oINS RGrmure
' HIGHENERGY PARTICLES LEAVING A SNR

ADOPTING THE GALACTIC DIFFUSION COEFFICIENT AS A
BENCHMARK

| o\ /2 o 1/2
D(E) = v\ = A= 1pc ~ L.
3

GeV 2.51eV

EVEN ASSUMING BALLISTIC MOTION IN SUCH REGION, FOR THE
PARAMETERS OF A SNR:

BQ
T

THE NON RESONANT MODES ‘a la Bell” ARE ALLOWED TO GROW ON A TYPICAL TIME SCALE-:

~ 1.1(E/2.5TeV)~" years

Vimaz =
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HYBRID SIMULATIONS
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Schroer+, 2021, Dynamical effects of cosmic rays leaving their sources

¢ THE EXCITATION OF

THE INSTABILITY LEADS TO

STRONG PARTICLE SCATTERING, WHICH IN TURN
INCREASES CR DENSITY NEAR THE SOURCE

¢ THE PRESSURE GRADIENT THAT DEVELOPS CREATES A

FORCE THAT LEADS TO
AROUND THE SOURCE

THE INFLATION OF A BUBBLE

¢ THE SAME FORCE EVACUATES THE BUBBLE OF MOST

PLASMA

¢ THERE IS NO FIELD IN ~

HE PERP DIRECTION TO START

WITH, BUT CR CREATE I
DIFFUSION, about 10 times

" AT LATER TIMES (SUPPRESSED
Bohm)
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GRAMMAGE IN THE NEAR SOURCE REGION

IF THE DIFFUSION COEFFICIENT IN THE REGION SURROUNDING THE SOURCE GETS SUPPRESSED ENOUGH AND FOR
LONG ENOUGH TIME, THEN CR CAN ACCUMULATE SOME GRAMMAGE IN THE REGION

THIS NEAR-SOURCE GRAMMAGE DEPENDS ON THE D(E) SUPPRESSION (&) AND ON THE GAS EVACUATION (1)

THIS GRAMMAGE CAN BE COMPARED WITH THAT IN THE GALAXY. THE NEAR-SOURCE REMAINS SMALL IF

—~3><1o—3 L\ H O\ b )T
~ Hh S0pc Skpc 150pc

NEVERTHELESS THE NEAR-SOURCE GRAMMAGE CAN SIGNIFICANTLY AFFECT OUR MODELLING OF THE DATA AS WELL
AS ANTIPROTON/PROTON AND POSITRON FRACTION

QIU'\’\:
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[J FOR INSTANCE ONE MAY HOPE OF DETECTING HIGH E PARTICLES ESCAPED AT EARLIER TIMES, ONLY IF D IS
SUBSTANTIALLY REDUCED



