

TeV Particle Astrophysics 2021 [TeVPA 2021]

Studies of Medium and Heavy mass cosmic ray nuclei with the DAMPE space mission

Dimitrios Kyratzis on behalf of the DAMPE collaboration

Gran Sasso Science Institute (GSSI) & INFN-LNGS

Introduction: The Cosmic Ray Landscape

Research Goals & Open Questions

Precise measurements of CR spectra & mass composition Directly probing fine spectral structures (hardenings/softenings) Understanding CR acceleration & propagation mechanisms

The DAMPE space mission

Orbit: Sun – synchronous, 95 min Altitude: 500 km (LEO) Payload: 1300 kg

Main scientific objectives

CRs: All-electron, proton & nucleonic spectra w/ great precision
γ – rays: Insight on high-energy γ astronomy, transient studies, etc
DM: Indirect studies on possible DM candidates

Astropart. Phys., 95, 6 [2017]

Launched on Dec 17th 2015

Jiuquan Satellite Launch Center Gobi desert, China

The Collaboration

International synergy between Chinese, Italian & Swiss institutes/univ<u>ersities.</u>

Detector Description & Features

The plastic scintillator detector (PSD)

The silicon tracker (STK)

The BGO calorimeter (BGO)

The neutron detector (NUD)

PSD: Anti – coincidence detector for gammas and charge measurement
STK: Particle tracker, photon converter & additional charge measurement
BGO: Energy measurement & particle identification via shower topology
NUD: Further particle ID from electromagnetic & hadronic showers

Main Features

Energy range (e/γ)	$10~{ m GeV}$ - $10~{ m TeV}$
Energy range (CRs)	$50~{ m GeV}-200~{ m TeV}$
Energy resolution (e/γ)	< 1.5% @ 800 GeV
Energy resolution (p)	< 40% @ 800 GeV
Geometric Factor (e)	$> 0.3 \text{ m}^2 \text{sr} @ 30 \text{ GeV}$
Calorimeter specs	$32\mathrm{X_{_0}},1.6\mathrm{\Lambda_{_I}}$
Field of View	~1.0 sr

On – orbit status

Excellent PSD charge & STK track resolutions Stable BGO operation for more than 5 years of DAMPE live – time

...with more than 10 billion events collected

Stable & continuous data taking from Dec 2015 up to now

TeVPA 2021 - D. Kyratzis

DAMPE CRs: Insightful results so far

Direct detection of a spectral break at ~ 1 TeV in the all – electron spectrum

- Sample: 530 days of data
- Measurement range: 25 GeV 4.6 TeV

Science Advances Q. An *et al*, Sc. Adv. Vol. 5 no. 9 (2019)

Confirming spectral hardening around 500 GeV + revealing a novel softening at ~ 14 TeV

- **Sample:** 30 months of data
- Measurement range: 40 GeV 100 TeV

PHYSICAL REVIEW LETTERS Alemanno *et. al.* PRL 126, 201102 (2021)

Confirming spectral hardening around 1 TeV + revealing a novel softening at ~ 34 TeV

- Sample: 54 months of data
- Measurement range: 70 GeV 80 TeV

TeVPA 2021 - D. Kyratzis

Secondary CRs: Li, Be, B

Current work focusing on Lithium

Specific selections to reduce background from: He, C, N, O

Thus clearly revealing the contribution of Li

Towards Li spectral measurement

Ongoing & upcoming work

- Acceptance validation
- Estimation of background & systematics
- Similar techniques adopted for Be & B

Primary CRs: C & O nuclei

Selection Cuts

Exclusion of SAA flight data

 $E_{BGO} > 100 \text{ GeV}$

High Energy Trigger (HET) activation

BGO pre-selections:

Reconstructed track contained in first & last (of first 3) BGO layers Shower maximum not in the BGO border Removal of side entering events Rejection of shower vectors failing reconstruction

BGO – STK match:

 $\chi^2 < 25, \& \Delta(\theta_{track} - \theta_{BGO}) < 25^{\circ}$ XZ and YZ projections on top of STK < 200 mm & BGO < 60 mm Same track ID for XZ and YZ

> PSD fiducial cut: Track projection on first PSD layer < 400 mm

PSD – STK match Selecting bar crossed by STK both in XZ & YZ, from PSD bars

TeVPA 2021 - D. Kyratzis

PSD charge spectrum for Flight Data after all implemented corrections

This specific selection cut ensures a pure sample in BCNO & is universally applied throughout the analysis

PSD Charge Spectra

Application of the aforementioned cut both in Flight & MC data

Charge Selection [FD] & Future prospects

Flight Data

C & O selections following the charge smearing procedure

Ongoing & upcoming efforts foresee background & systematics' evaluation +extension to higher energies (~ TeV/n)

B/C, B/O – Customarily used to probe CR propagation in the Interstellar Medium

Understanding the CR propagation mechanism (and more...)

Secondary nuclei (Li, Be, B) produced via **spallation** from interactions of **heavier nuclei** (C, N, O) with the Interstellar Medium (ISM) Secondary – to – primary ratios provide crucial information on the CR propagation mechanism

C. Yue et. al. PoS, ICRC 2021, 126

5 years of DAMPE data used in the measurement of secondary-over-primary ratios

Contamination estimation for **Boron & Carbon** nuclei

CR Flux Ratios: B/C

Preliminary results for B/C in the range of 20 – 400 GeV/n

Consistent results w/ AMS & PAMELA within the systematics

B/C analysis up to few TeV/n is ongoing

Primary CRs: Fe

Z. Xu *et. al.* PoS, ICRC 2021, 115

Iron Fragmentation

Large percentage fragmenting in PSD or STK

Common issue in all analyses involving such heavy nuclei

Nuclear fragmentation taking place inside the BGO will result in a cleaner track (left) when compared to events fragmenting inside the STK (right)

Ongoing work on Fe analysis with 5 years of DAMPE data

O. Adriani et al. (CALET), Phys. Rev. Lett. 126, (2021), 241101

DAMPE results should assist in understanding spectral differences

TeVPA 2021 - D. Kyratzis

Ongoing work on Fe analysis with 5 years of DAMPE data

Rigorous efforts in:

evaluating systematics, optimizing selection cuts, understanding nuclear fragmentation effects extension of measurements in the multi-TeV region

DArk Matter Particle Explorer (DAMPE)

- In orbit since 2015
- Stable data taking with excellent performance
- Unique instrument in probing Galactic Cosmic Rays

Scientific results & ongoing work

- Insight on ongoing CR analyses regarding medium & heavy mass nuclei
- All analyses performed include 5 years of DAMPE flight data
- Updated works on Li, B/C, C, O & Fe
- Extension of previous measurements to higher energies with great precision

