

OVERVIEW AND RESULTS THE 8-YEAR HIGH ENERGY NON-STANDARD INTERACTIONS ANALYSIS

TeVPA 2021 Parallel 10/28/21

GRANT K. PARKER grant.parker@mavs.uta.edu

The IceCube Neutrino Observatory

Figure: The IceCube neutrino observatory. DeepCore is an additional collection of strings that allow for signals as low as 5 GeV.

- World's largest-volume neutrino detector and telescope, located under the ice at the South Pole
- Detection mechanism:
 - Neutrino interaction with ice produces charged products.
 - Interaction products have sufficient energy to generate Cherenkov radiation along their trajectory.
 - Collected light allows for neutrino direction and energy reconstruction.
 - Two event types: tracks (linear trajectories) and cascades (blob-like signal).
 - **DeepCore** is collection of specialized center strings that lower the event energy threshold to ~5 GeV

Non-Standard Interactions

NSI arise in accounting for mass effects on neutrino oscillations

- Standard Model (SM) cannot account for neutrino masses
- If neutrino masses are Majorana, they can be added as a dim(5) Weinberg operator
- In many theories, a dim(6) operator accompanies the dim(5) operator, from which NSI arise
- In a basic model, coupling strength $\varepsilon \sim g_X^2 m_W^2/m_X^2$, so for natural values of *g*, the mediator > 1TeV

Figure: Diagramed neutrino-matter interactions for SM and NSI [Ohlsonn 2013 arXiv 1209.2710].

Neutrino oscillations are only sensitive to neutral-current NSI:

$$\mathcal{L}_{\mathrm{NSI}} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{f,P} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}) (\bar{f}\gamma_{\mu}Pf) \longrightarrow \varepsilon_{\alpha\beta} = \sum_{f,P} \varepsilon_{\alpha\beta}^{fP} \frac{N_f}{N_e} \longrightarrow H_{\mathrm{mat}} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \varepsilon_{ee}(x) \ \varepsilon_{e\mu}(x) \ \varepsilon_{e$$

Non-Standard Interactions

If NSI exist:

- NSI <u>fit better</u> than the SM to some measurements of data, suggesting the alleviation of tensions
 - Example Tension (Top Right): Constraints on *o*_{CP} from T2K and NOvA [A. Himmel for the NOvA Collaboration (plenary)]
- However, NSI also introduce degeneracies to parameters such as $\pmb{\theta}_{23}$ and $\pmb{\delta}_{\rm CP}$
 - **Example Degeneracy (Bottom Right)**: Loss of θ_{23} octant sensitivity as a function of $|\varepsilon_{e\mu}|$ [Agarwalla et. al. 2016 <u>arXiv:1607.01745</u>]

<u>Therefore, NSI are very</u> <u>compelling to study!</u>

NSI are a modification to the matter potential:

- IceCube atmospheric neutrinos
 - Various energies + various matter baselines (right) = optimal sample for BSM oscillations searches through muon track appearance and disappearance
- The rate of detected atmospheric neutrinos far exceeds backgrounds and other signal types (bottom)

Figure: (Top) Model of neutrinos reaching IceCube from multiple atmospheric sites (Credit: E. Lohfink for the IceCube Collaboration). (Bottom) Rates of neutrinos from different sources (S. Axani for the IceCube Collaboration).

downgoing

Other IceCube Analyses:

- The 8-year DeepCore analysis (ongoing):
 - Fit on *all* complex NSI parameters
 - Different parameterization that allows for constraining the differences between the diagonal Hamiltonian elements
- Sample: ~5-300 GeV, 8.2 years of data, ~300,000 events
 - Binning in energy, zenith, and topology (tracks and cascades)
- DeepCore analysis 3-year (<u>Phys. Rev. D</u> <u>104, 072006</u>) : 50k events

Figure: Sensitivities for the upcoming 8-year low-energy NSI result. Credit: E. Lohfink for the IceCube collaboration.

The 8-Year High-Energy Analysis

- Our analysis fits at much higher energies (500 GeV - 10 TeV) than DeepCore:
 - Only muon tracks, 300k events,7.6 years of data
 - This is to constrain a single parameter, $\epsilon_{\mu\tau}$
 - ϵ_{μτ} has the predominant effect on expected fluxes at high energies (right figure)

Figure: Neutrino oscillation probabilities with NSI. Red represents positive NSI values, while blue represents negative values. Credit: E. Lohfink for the IceCube Collaboration.

Analysis Predecessor

IceCube's latest sterile neutrino search published last year:

- 305,891 CC ν and $\overline{\nu}$ muon track events (7.64 years)
- Muon energy proxy: 500 9976 GeV
- Baseline MC: 500 years equivalent livetime
- Muon anti/neutrino disappearance shape signal

The larger data set was met with an updated analysis framework:

- MC Treatment with compactification abilities
- New analysis software for weighting and fitting
- Improved systematic treatment for larger sample
- Optimized event selection with reduced background and boosted statistics

Figure: Results of Analysis I (left) and Analysis II (right), each presenting best-fits and CL contours for their respective parameter spaces. [arXiv:2005.12943]

Parameter of Interest for This Analysis:

- At the energies and baselines of this analysis, $\nu_{\rm e}$ decouples from oscillation and vacuum terms are suppressed.
 - Leads to only mu-tau oscillation, which means the mu-tau NSI parameter becomes predominant (Right)
- This is seen in simulated fluxes— all parameters except $\varepsilon_{\mu\tau}$ only enhance/suppress fluxes at O(10%) for parameter strength 0.01 (Below)

$$P(\nu_{\mu} \to \nu_{\tau}) \simeq \left(\sin 2\theta_{23} \frac{\Delta m_{31}^2}{2 E_{\nu}} + 2 V_d \varepsilon_{\mu\tau}\right)^2 \left(\frac{L}{2}\right)^2$$

When we simulate neutrino and antineutrino fluxes independently, we see:

This confirms the theory prediction: that as the sign of the matter potential changes between anti/neutrinos, signal shapes switch between +/- $\text{Re}(\epsilon_{\mu\tau})$

Grant K. Parker

Combining the ν and $\overline{\nu}$ effects, the expected signal at IceCube is predominantly disappearance, and is much weaker than a pure ν or $\overline{\nu}$ flux.

UTA

Let's rescale to look at the signal shape:

UTA

Inverted Hierarchy Prediction

Sensitivity and Impact of Systematic Uncertainties

The 90% CL sensitivity is given in black ("central").

Impact of Systematic Uncertainties:

- Individual systematic uncertainties have have little impact on the sensitivity.
- For testing, we group uncertainties by type, then turn them off individually to measure their impact (right).

Breakdown of Categorizations

- Bulk Ice: Uncertainties from the optical properties of South Pole glacial ice.
- Hole Ice: Uncertainties from the optical properties of refrozen ice in the drilled sensor column
- DOM Efficiency: How well the light sensors operate post-installation
- Atmospheric Neutrino Flux: Uncertainties in the production factors for atmospheric neutrinos
- Cosmic Ray and Astrophysical Neutrino Flux: Uncertainties regarding the fluxes of cosmic rays and astrophysical neutrinos

Results (Real-Only)

- Figure (Top)
 - $\operatorname{Re}(\boldsymbol{\varepsilon}_{\mu\tau})$ results for this analysis, including the -2LLH profile for the data and the obtained CL intervals
- Figure (Bottom)
 - Comparison of the $\operatorname{Re}(\varepsilon_{\mu\tau})$ result from this analysis to other leading analyses that constrain $\operatorname{Re}(\varepsilon_{\mu\tau})$ only
- Best-Fit:

 $\circ \boldsymbol{\varepsilon}_{\mu\tau} = -0.0029$

- Significance:
 - p-value = 0.252
 - Result is 0.68 **o** from the mean NSI value recovered from 1000 null hypothesis (no NSI) trials
- 90% CL Limits:

• -0.0041 < $\varepsilon_{\mu\tau}$ < 0.0031

IceCube obtains a new world-leading limit

Results (Complex)

• Figure:

- CL regions for complex $\boldsymbol{\varepsilon}_{\mu\tau}$
- The Im($\boldsymbol{\varepsilon}_{\mu\tau}$) component is degenerate for a given Re($\boldsymbol{\varepsilon}_{\mu\tau}$) (see slide 21)
- Due to the degeneracy, we fit only along $\operatorname{Re}(\varepsilon_{\mu\tau})$ and infer the $\operatorname{Im}(\varepsilon_{\mu\tau})$ limits. This has the advantages of faster computing time and one less degree of freedom to fit to.

Global Comparison

• Figure:

- Few analyses fit to complex $\boldsymbol{\varepsilon}_{\mu\tau}$
 - We compare our result and sensitivity to those of IceCube DeepCore analyses
- DeepCore analyses are in the low-energy regime (5-300 GeV), where *v*_e does not effectively decouple from atmospheric neutrino oscillations
- $\circ~$ While the Im($\pmb{\varepsilon}_{\mu\tau}$) symmetry is still observed, the overall radial symmetry for the contours is lost in the 3-neutrino mixing regime

Conclusions

In the era of high-precision neutrino physics, NSI must be constrained

With 8 years of high-energy muon neutrino data, our result sets 90% CL limits of $\varepsilon_{\mu\tau}$ parameter: -0.0041 < $\varepsilon_{\mu\tau}$ < 0.0031

This analysis sets the **tightest constraint on any NSI parameter in any channel** globally, with improvement on the nearest limits of $\varepsilon_{\mu\tau}$ by a factor of ~2

Thank You

Backup Slides

Sterile Results

• Below is the comparison of 90% CL results for Analysis I (left) and Analysis II (right) to other published limits.

Symmetry Between +Im(NSI) and -Im(NSI

- For a given Re, +Im and -Im are identical in the two-neutrino calculation (right)
- Therefore, we can:
 - 1: Scan only the Re axis to get all the information
 - 2: Calculate statistics object for 1 DoF

$$P(+) = \left| \sin 2\theta_{23} \frac{\Delta m_{31}^2}{2E_{\nu}} + 2(a+bi)V_d \right|^2 \left(\frac{L}{2}\right)^2$$

$$P(-) = \left| \sin 2\theta_{23} \frac{\Delta m_{31}^2}{2E_{\nu}} + 2(a-bi)V_d \right|^2 \left(\frac{L}{2}\right)^2$$

$$P(+)/P(-) = \frac{\left| \sin 2\theta_{23} \frac{\Delta m_{31}^2}{2E_{\nu}} + 2(a+bi)V_d \right|^2}{\left| \sin 2\theta_{23} \frac{\Delta m_{31}^2}{2E_{\nu}} + 2(a-bi)V_d \right|^2}$$

$$\frac{\left(\sin 2\theta_{23} \frac{\Delta m_{31}^2}{2E_{\nu}} \right)^2 + 4(a)V_d \sin 2\theta_{23} \frac{\Delta m_{31}^2}{2E_{\nu}} + 4(a^2+b^2)V_d^2}{\left(\sin 2\theta_{23} \frac{\Delta m_{31}^2}{2E_{\nu}} \right)^2 + 4(a)V_d \sin 2\theta_{23} \frac{\Delta m_{31}^2}{2E_{\nu}} + 4(a^2+b^2)V_d^2}$$

= 1

NSI LLH Offset

- At sample energies, the electron flavor state decouples from atmospheric oscillation.
- Below is the approximate calculation of the difference in probabilities for NSI values with equal imaginary components, opposite-sign real components.

$$P(-) - P(+) =$$

$$\left[\left| \sin 2\theta_{23} \frac{\Delta m_{31}^2}{2E_{\nu}} + 2(-a+bi)V_d \right|^2 - \left| \sin 2\theta_{23} \frac{\Delta m_{31}^2}{2E_{\nu}} + 2(a+bi)V_d \right|^2 \right] \left(\frac{L}{2}\right)^2$$
$$= -aV_d L^2 \sin 2\theta_{23} \frac{\Delta m_{31}^2}{E_{\nu}}$$

= negative value

This confirms what we see in the -2Δ LLH distribution, as -2Δ LLH $(-a + bi) < -2\Delta$ LLH(a + bi).

Expected Distributions

Signal in reconstruction space:

