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The IceCube Neutrino Observatory
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Figure: The IceCube neutrino observatory. DeepCore is an
additional collection of strings that allow for signals as low as 5 GeV.

ing optimized for lower energies

e World’s largest-volume neutrino detector and telescope,
located under the ice at the South Pole

e Detection mechanism:

86 strings including 8 DeepCore strings

o Neutrino interaction with ice produces charged
products.

o Interaction products have sufficient energy to generate
Cherenkov radiation along their trajectory.

o Collected light allows for neutrino direction and energy
reconstruction.

e Two event types: tracks (linear trajectories) and cascades
(blob-like signal).

e DeepCore is collection of specialized center strings that
lower the event energy threshold to ~5 GeV
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Non-Standard Interactions

NSI arise in accounting for mass effects on neutrino oscillations

e Standard Model (SM) cannot account for neutrino masses

e [f neutrino masses are Majorana, they can be added as a dim(5)

Weinberg operator

In many theories, a dim(6) operator accompanies the dim(5) operator,
from which NSI arise

In a basic model, coupling strength & ~ g%m%,/m%, so for natural
values of g, the mediator > 1TeV

Neutrino oscillations are only sensitive to neutral-current NSI:
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Figure: Diagramed neutrino-matter interactions for SM and NSI
[Ohlsonn 2013 arXiv 1209.2710].
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Now we have a general
parameterization.
Oscillations experiments are
not sensitive to diagonal
parameters in this model.
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https://arxiv.org/abs/1209.2710

Non-Standard Interactions

If NSI exist:

e NSI fit better than the SM to some measurements of data,
suggesting the alleviation of tensions

o Example Tension (Top Right): Constraints on &, from T2K and NOVA [A.
Himmel for the NOvA Collaboration (plenary)]

e However, NSl also introduce degeneracies to parameters such
asé,,andd .,

o Example Degeneracy (Bottom Right): Loss of 8, octant sensitivity as a
function of |8eu| [Agarwalla et. al. 2016 arXiv:1607.01745]

Therefore, NSl are very
compelling to study!
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NS/ in IceCube

NSI are a modification to the matter potential:

e |ceCube atmospheric neutrinos

o Various energies + various matter baselines (right) = optimal sample for BSM
oscillations searches through muon track appearance and disappearance

e The rate of detected atmospheric neutrinos far exceeds backgrounds and other

signal types (bottom)
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Figure: (Top) Model
of neutrinos
reaching IceCube
from multiple
atmospheric sites
(Credit: E. Lohfink
for the IceCube
Collaboration).
(Bottom) Rates of
neutrinos from
different sources (S.
Axani for the

1 lceCube
1 Collaboration).
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Other IceCube Analyses:

e The 8-year DeepCore analysis (ongoing):
o Fit on all complex NSI parameters

o Different parameterization that allows for
constraining the differences between the
diagonal Hamiltonian elements

e Sample: ~5-300 GeV, 8.2 years of data,
~300,000 events

o Binning in energy, zenith, and topology
(tracks and cascades)

e DeepCore analysis 3-year (Phys. Rev. D
104, 072006) : 50k events

68% (90%) sensitivity
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Figure: Sensitivities for the upcoming 8-year low-energy NSI

result. Credit: E. Lohfink for the lceCube collaboration.
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072006
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The 8-Year High-Energy Analysis

1.0 Figure: Neutrino

e Our analysis fits at much higher ] oscillation
energies (500 GeV - 10 TeV) than . pro*ﬁg;"t;{e: dW'th
DeepCore: 2 5_- represents positive

A o] NSI values, while

J blue represents

o Only muon tracks, 300k events, - negative values.
A Credit: E. Lohfink

7.6 years of data 0.0 for the IceCube

T LA L NI | T T T rrrry T T LI N B |

) ) Collaboration.
10 102 103

o This is to constrain a single
parameter, €

me, has the predominant effect
on expected fluxes at high
energies (right figure)

Grant K. Parker




Analysis Predecessor

IceCube’s latest sterile neutrino search
published last year:

305,891 CC v and I muon track events (7.64 years)
Muon energy proxy: 500 - 9976 GeV

Baseline MC: 500 years equivalent livetime

Muon anti/neutrino disappearance shape signal

The larger data set was met with an
updated analysis framework:

MC Treatment with compactification abilities
New analysis software for weighting and fitting
Improved systematic treatment for larger sample

Optimized event selection with reduced
background and boosted statistics
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Figure: Results of Analysis | (left) and Analysis Il (right), each
presenting best-fits and CL contours for their respective parameter

spaces. [arXiv:2005.12943]
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Parameter of Interest for This Analysis:

e Atthe energies and baselines of this analysis, v, decouples from oscillation
and vacuum terms are suppressed. P(Vu =% ,/7_) ~

o Leads to only mu-tau oscillation, which means the mu-tau NSI
parameter becomes predominant (Right)
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enhance/suppress fluxes at O(10%) for parameter strength 0.01 (Below)
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Im(e,r)| = 0.0

Signal Prediction

When we simulate neutrino and antineutrino fluxes independently, we see:

NEUTRINO ANTINEUTRINO
Predicted NSI/SM v, Flux Ratio (Normal Hierarchy) Predicted NSI/SM 7, Flux Ratio (Normal Hierarchy)
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This confirms the theory prediction: that as the sign of the matter potential changes
between anti/neutrinos, signal shapes switch between +/- Re(eyr)
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Signal Prediction

Combining the v and v effects, the expected signal at IceCube is predominantly
disappearance, and is much weaker than a pure v or v flux.

Predicted NSI/SM v, + 7, Flux Ratio (Normal Hierarchy)
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Signal Prediction

Let’s rescale to look at the signal shape:

Predicted NSI/SM v, + 7, Flux Ratio (Normal Hierarchy)
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Inverted Hierarchy Prediction

NEUTRINO ANTINEUTRINO
Predicted NSI/SM v, Flux Ratio (Normal Hierarchy) Predicted NSI/SM 7, Flux Ratio (Normal Hierarchy)
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Sensitivity and Impact of Systematic Uncertainties

The 90% CL sensitivity is given in black (“central”).

Impact of Systematic Uncertainties:

0.003

¢ Individual systematic uncertainties have have little impact on the

sensitivity.

e For testing, we group uncertainties by type, then turn them off
individually to measure their impact (right).

Breakdown of Categorizations

e Bulk Ice: Uncertainties from the optical properties of South Pole
glacial ice.

e Hole Ice: Uncertainties from the optical properties of refrozen ice in
the drilled sensor column

0.002

0.001

0.000

Im (&47)

—0.001

e DOM Efficiency: How well the light sensors operate post-installation

e Atmospheric Neutrino Flux: Uncertainties in the production
factors for atmospheric neutrinos

¢ Cosmic Ray and Astrophysical Neutrino Flux: Uncertainties
regarding the fluxes of cosmic rays and astrophysical neutrinos

—0.002

—0.003

Grouped Systematic Uncertainty
Impacts on 90%CL Sensitiviy

—— Detector Off =—— Cosmic Off

Hadronic Off =—— Central

—0.003

—-0.002 -0.001 0.000 0.001

Re (&,7)

0.002

0.003
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Results (Real-Only)

e Figure (Top)
o Re(e, ) results for this analysis, including the -2LLH
profifé for the data and the obtained CL intervals

e Figure (Bottom)
o Comparison of the Re(eﬂr) result from this analysis to
other leading analyses that constrain Re(eyr) only

e Best-Fit:
o & _=-0.0029
HT

e Significance:
o p-value =0.252

o Resultis 0.68 0 from the mean NSI value
recovered from 1000 null hypothesis (no NSI) trials

e 90% CL Limits:
o -0.0041 < 8“1 < 0.0031

IceCube obtains a new world-leading limit
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90% CL Sensitivity

CL 90%

CL 68%

|
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Region
90% CL
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-2LLH
(Data)

Data
X Best-Fit

101

23

[ceCube
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This Analysis 90% CL Result

IceCube 2017 90% CL Result

SK 2011 90% CL Result

-0.008
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-0.004 0.0 0.004  0.008
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Results (Complex)

0.006
° Figure: 0 95% CL Region 90% CL Sensitivity
B 90% CL Region % Data Best-Fit
i B 68% CL Region
o CL regions for complex € 0.004
o The Im(sm) component is degenerate for a
given Re(em) (see slide 21) 0000
o Due to the degeneracy, we fit only along g
Re(e ) and infer the Im(e, ) limits. This has =
HT HT ] . E 0.000 A
the advantages of faster computing time =
and one less degree of freedom to fit to.
—0.002
—0.004 |
[ceCube Preliminary
—0.004  —0.002  0.000 0.002 0.004
Re (€r)
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Global Comparison

e Figure:
o Few analyses fit to complex €.

m \WWe compare our result and
sensitivity to those of IceCube
DeepCore analyses

o DeepCore analyses are in the
low-energy regime (5-300 GeV), where
v, does not effectively decouple from
atmospheric neutrino oscillations

o While the Im(em) symmetry is still
observed, the overall radial symmetry
for the contours is lost in the 3-neutrino
mixing regime
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0.01+
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0.00 1

m—— Analysis Result e DeepCore 3-Year 2021

== Analysis Sensitivity === DeepCore 8-Year Sensitivity
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Conclusions

In the era of high-precision neutrino physics, NSI must be constrained

With 8 years of high-energy muon neutrino data, our result sets 90% CL limits of €,r
parameter: -0.0041 < €< 0.0031

This analysis sets the tightest constraint on any NSI parameter in any channel
globally, with improvement on the nearest limits of € s by a factor of ~2
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Sterile Results

e Below is the comparison of 90% CL results for Analysis | (left) and Analysis Il (right) to other published

limits.
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Symmetry Between

+Im(NSI) and -Im(NSI 2 2 7N 2
( ) ( P(+) = |sin 2923%231 +2(a + bi)Vy <§)
e ForagivenRe, +Im and -Im are Y , ,
identical in the two-neutrino . Am?»,l . L
calculation (right) P(=) = |sin 205 °F, +2(a — bi)Vy )

.3 Am3, ; ;
sin 205355 + 2(a + bi)Vy
2

e Therefore, we can:

Pk ) Pl =

sin 203 = ”“ + 2(a — b))V

o 1: Scan only the Re axis to
get all the information

2 2
(sin 2053558 )+ 4(a) Visin 2055558 + 4(a® + 1)V

o 2: Calculate statistics object  _ 2k 5
for 1 DoF (sin 26,3 2E) + 4(a) Vysin 20535022 + 4(a2 + b2) V7
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NSI LLH Offset

e At sample energies, the electron flavor state decouples from atmospheric oscillation.

e Below is the approximate calculation of the difference in probabilities for NSI values with equal imaginary
components, opposite-sign real components.

|

P(=) - P(+) =

2 2

2
Amg;

v

2
Ams,

v

sin 26053 + 2(—a+ i)V, sin 2093 + 2(a + b))V

()

2
Ami,

= —CL‘/dLZ sin 2923

1%

= negative value

This confirms what we see in the —2ALLH distribution, as
—2ALLH(—a + bi) < —2ALLH(a + b3).



EPsY [GeV]

Expected Distributions

Signal in reconstruction space:

MC Expectation €,, = -0.003 + 0.0 i MC Expectation €,, = 0.003 + 0.0 i
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