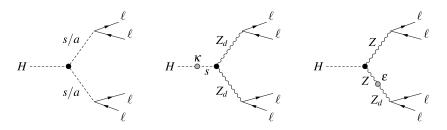

#### Searches for exotic decays of the Higgs boson and additional scalar particles in ATLAS

#### Elliot Reynolds, for the ATLAS Collaboration TeVPA 2021, 29<sup>th</sup> October 2021





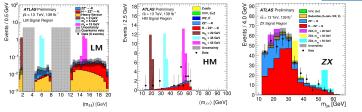



- The discovery of a Higgs boson with a mass of about 125 GeV completed the particle content of the Standard Model (SM)
- Many observations are yet to be explained, and extensions to the SM might address these shortcomings
  - Naturalness
  - <u>Dark matter</u>, perhaps via a <u>Higgs portal</u>
  - Baryon asymmetry
  - Diffuse gamma-ray excess from the galactic center
  - g 2 anomaly
- Many such models introduce additional Higgs-like bosons  $\rightarrow$  unique window for the discovery of beyond the SM (BSM) physics
- ATLAS Higgs boson <u>measurements</u> set 21% upper limit at 95% CL on Higgs boson decays to undetected final states
- Small  $\Gamma_{h_{125}}^{SM} \rightarrow \text{possible large BSM branching fractions } (\mathcal{B}) \checkmark$
- Searches are presented for BSM Higgs bosons and BSM 125 GeV Higgs boson decays, many using 139 fb<sup>-1</sup> of 13 TeV pp collision data

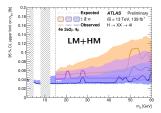
## $H \rightarrow XX/ZX \rightarrow 4\ell$ Searches – Overview (1/2)

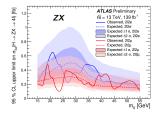
ATLAS-CONF-2021-034




Target signal: new spin-0 or spin-1 bosons X

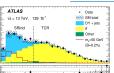
- Possibly a CP-odd (CP-even) Higgs boson a(s), or a dark photon  $Z_d$
- Searches:
  - Low-mass (LM):  $H \rightarrow XX \rightarrow 4\mu$  ( $1 < m_X < 15 \text{ GeV}$ )
  - High-mass (HM):  $H \rightarrow XX \rightarrow 4\ell$  (15 <  $m_X < 60$  GeV),  $\ell = e$  or  $\mu$
  - Single Z boson (ZX):  $H \rightarrow ZX \rightarrow 4\ell$  (15 <  $m_X < 55$  GeV)
- Triggers: single- and di-lepton

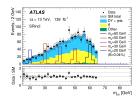

2 16  $H \rightarrow XX/ZX \rightarrow 4\ell$  Searches – Overview (2/2)

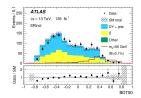

- Selection overview: quadruplets of same-flavour opposite-sign di-lepton pairs, with minimum p<sub>T</sub> cuts, and H, X and Z mass-compatibility requirements where relevant
  - $m_{12}$  and  $m_{34}$  defined as invariant masses of di-leptons, with  $|m_{12} m_Z| < |m_{34} m_Z|$
- Main backgrounds:  $H \rightarrow ZZ^* \rightarrow 4\ell$  and  $ZZ^* \rightarrow 4\ell$
- **Modelling**: signal and main backgrounds modelled in Monte-Carlo simulation (MC), with data-driven  $H \rightarrow ZZ^*$  normalisation for ZX search
- Final discriminants:  $(m_{12} + m_{34})/2$  for LM and HM searches, and  $m_{34}$  for ZX search
- Main uncertainties: data statistics in signal regions (SRs)

## $H \rightarrow XX/ZX \rightarrow 4\ell$ Searches – Results




- Largest excess: HM search,  $m_{Z_d} = 28$  GeV, **2.5**  $\sigma$  local significance
- Model independent CL<sub>S</sub> upper limits at 95% CL set on fiducial cross sections
- Model dependent upper limits also calculated (backup)



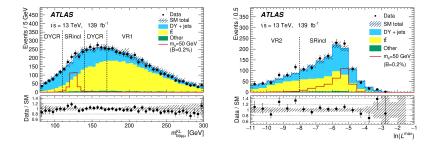




#### $H \rightarrow aa \rightarrow bb\mu\mu$ Search – Overview

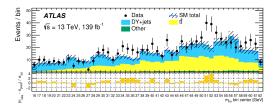
- **Target signal**: *a* with  $16 < m_a < 62$  GeV
- Triggers: single- and di-muon
- Selection overview: two opposite-sign muons, two b-tagged jets, E<sub>T</sub><sup>miss</sup> < 60 GeV, and boosted decision tree (BDT)
- Main backgrounds: *tt* and DY + jets
- Categorisation: SR, and two control regions (CRs), one for each main background
- Modelling: signal and tt shape from MC, DY + jets shape from a 0-b region in data with N<sub>jet</sub>- and BDT-based corrections from MC, main backgrounds normalised using data
- Final discriminant: BDT and  $m_{\mu\mu}$
- Main uncertainties: data statistics

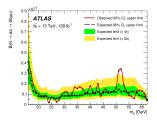






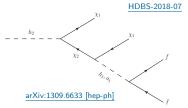

 $\frac{5}{16}$ 


## $H ightarrow aa ightarrow bb \mu \mu$ Search – Kinematic Likelihood-Fit


HDBS-2021-03

- Kinematic likelihood fit corrects the jet energies by exploiting the compatible invariant masses of the  $a \rightarrow \mu\mu$  and  $a \rightarrow bb$  systems  $\rightarrow$  better four-body mass resolution and background rejection  $\checkmark$
- $110 < m_{bb\mu\mu}^{KL} < 140 \text{ GeV}$ ■  $\ln(L^{\max}) > -8$



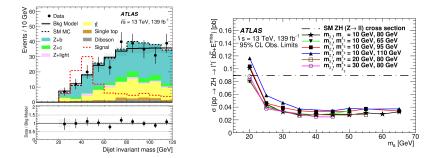

- Largest excess observed at  $m_a = 52$  GeV and corresponds to a local (global) significance of 3.3  $\sigma$  (1.7  $\sigma$ )
- Binned likelihood fit to event yield in  $m_{\mu\mu}$  bin in SR and in  $t\bar{t}$  CR, and to  $m_{\mu\mu}$  distribution in DY + jets CR used to set CL<sub>S</sub> upper limits at 95% CL on  $\mathcal{B}(H \to aa \to bb\mu\mu)$
- Limits improved by a factor of 2–5 over the full  $m_{\mu\mu}$  range compared to previous ATLAS search  $\checkmark$





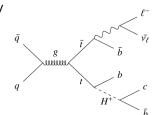
# $H o \tilde{\chi}_1^0 \tilde{\chi}_2^0 o \tilde{\chi}_1^0 \tilde{\chi}_1^0 a o bb + \mathsf{MET}$ Search – Overview

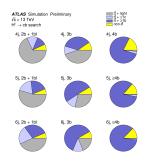
- **Target signal**:  $Z(\ell \ell)H$  production, and cascade decay through neutralinos  $\tilde{\chi}_{1/2}^{0}$  and *a*, e.g. from <u>Supersymmetry</u>
- Triggers: single electron or muon




 $\frac{8}{16}$ 

- Selection overview: di-lepton system compatible with Z,  $\geq 2$  jets with  $\geq 1$  *b*-tag,  $E_{\rm T}^{\rm miss} > 100$  GeV,  $0.8 < (p_{\rm T}^{\rm jj} + E_{\rm T}^{\rm miss})/p_{\rm T}^{\ell\ell} < 1.2$
- Main backgrounds: Z + HF and  $t\bar{t}$
- **Categorisation**: SR, and CRs for Z + HF and  $t\bar{t}$  backgrounds
- **Modelling**: Signal modelled using MC, and Z + HF and  $t\bar{t}$  estimates from data CRs with MC-based corrections for SR/CR normalisations and to Z + HF shape
- Final discriminant:  $m_{jj}$ , of two highest  $p_T$  jets, with  $\geq 1 b$ -tag
- **Main uncertainties**: data statistics, background normalisation

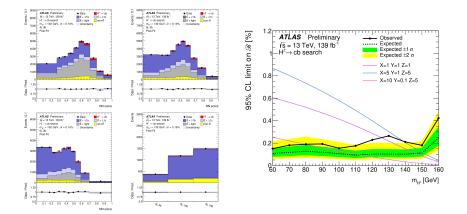

# $H ightarrow { ilde \chi}_1^0 { ilde \chi}_2^0 ightarrow { ilde \chi}_1^0 { ilde \chi}_1^0 a ightarrow bb + {\sf MET}$ Search – Results


- Binned likelihood fit to  $m_{\rm jj}$  distribution used to set CL<sub>S</sub> upper limits at 95% CL on  $\mathcal{B}(H \to \tilde{\chi}_1^0 \tilde{\chi}_2^0 \to a \tilde{\chi}_1^0 \tilde{\chi}_1^0 \to b b \tilde{\chi}_1^0 \tilde{\chi}_1^0)$  for a three-dimensional scan of the  $\tilde{\chi}_1^0$ ,  $\tilde{\chi}_2^0$  and *a* masses
- First direct LHC limits on this exotic Higgs boson decay 🗸



## $tt \rightarrow tH^{\pm}b$ , $H^{\pm} \rightarrow cb$ Search – Overview

- **Target signal**:  $H^{\pm}$  with 60 <  $m_{H^{\pm}}$  < 160 GeV
- First search of its kind by ATLAS
- Triggers: single-electron or single-muon
- Selection overview: 1 electron or muon, ≥ 4 jets with ≥ 2 *b*-tag
- Main background:  $t\bar{t} + HF$
- Categorisation: 9 N<sub>jet</sub> and N<sub>b-tag</sub> categories
- Modelling: MC used, with data-driven correction for tt background
- Final discriminant: neural network (NN), parameterised in *m*<sub>H</sub><sup>±</sup>
- Main uncertainties: c-tagging calibration, light-jet mis-tagging rate, tt NLO generator, and tt + HF normalisation

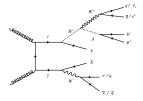




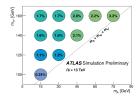

#### $tt \rightarrow tH^{\pm}b, H^{\pm} \rightarrow cb$ Search – Results

 $\frac{11}{16}$ 

- Largest local (global) excess of 3  $\sigma$  (1.6  $\sigma$ ) seen at  $m_{H^{\pm}} = 130$  GeV
- Binned likelihood fit to NN output or yield after NN cut in 6 event categories used to set CL<sub>S</sub> upper limits at 95% CL

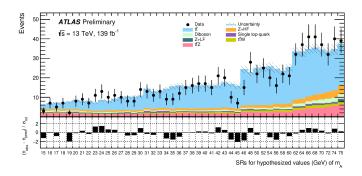



## $tt \rightarrow tH^{\pm}b$ , $H^{\pm} \rightarrow WA$ , $A \rightarrow \mu\mu$ Search – Overview


- Target signal:  $H^{\pm}$  with  $60 < m_{H^{\pm}} < 160$  GeV and A with  $15 < m_A < 75$  GeV
- Bosonic decay modes of H<sup>±</sup> were recently described as "forgotten channels" ✓
- First search of its kind by ATLAS
- Triggers: single- and di-muon
- Selection overview: 1 electron, 2 opposite-sign muons, ≥ 3 jets with ≥ 1 *b*-tag

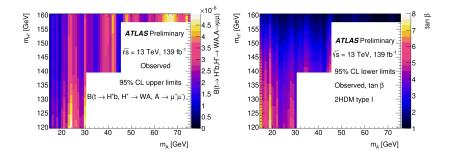
• 
$$p_{\rm T}(\mu^{\rm SS})/p_{\rm T}(\mu^{\rm OS}) > 0.2$$

- No explicit  $H^{\pm}$  reconstruction
- Main background: tt̄
- Categorisation: SR, and 3 CRs for  $t\bar{t}$ , Z + HF,  $t\bar{t}Z$
- Modelling: MC used, with background normalisations determined in data CRs

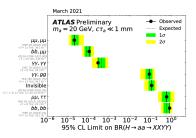


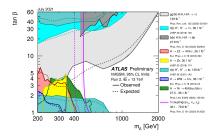

ATLAS-CONE-2021-047

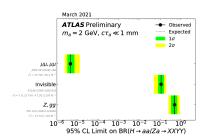


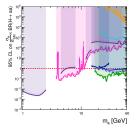

 $\frac{12}{16}$ 

- Final discriminant:  $m_{\mu\mu}$
- Main uncertainties: data statistics, tt and ttZ normalisations, tt hard-scatter and parton shower modelling, MC statistics
- $\blacksquare$  No significant excess observed, with largest excess being 1.24  $\sigma$





 $tt 
ightarrow tH^{\pm}$ b,  $H^{\pm} 
ightarrow$  WA,  $\overline{ extsf{A} 
ightarrow \mu \mu}$  Search – Limits


- Likelihood fit to event yield in single  $m_{\mu\mu}$  bins used to set CL<sub>S</sub> upper limits at 95% CL on  $\mathcal{B}(t \to bH\pm) \times \mathcal{B}(H^{\pm} \to W^{\pm}A) \times \mathcal{B}(A \to \mu\mu)$
- First lower limits on tan  $\beta$  in the  $m_{H^{\pm}}$ ,  $m_A$  space of the type-I 2HDM set using 2HDMC, under scenarios for  $m_H$  and  $m_{12}^2 \checkmark$




#### ATL-PHYS-PUB-2021-008 and ATL-PHYS-PUB-2021-030













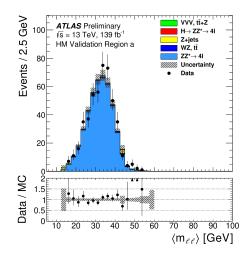


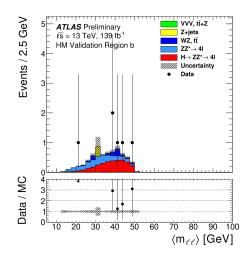
- observed
- Run 1 20.3 fb<sup>-1</sup> H→ aa→ μμττ DDD 92 (2015) 052002
- Run 1 20.3 fb<sup>-1</sup> H→ aa→ 3337 EPJC 76 (2016) 210
- Run 2 36.1 fb<sup>-1</sup> H→ aa→ pppp JHEP 05 (2016) 165
- Run 2 36.1 fb<sup>-1</sup> H→ aa→ bbbb JHEP 10 (2018) 031
- Run 2 35.1 fb<sup>-1</sup> H→ aa→ bbbb
- Run 2 36.7 fb<sup>-1</sup> H→ aa→ γγgg
- Bun 2 139 fb<sup>-1</sup> H-+ aa-+ bhuu
- ATLAS-CONF-2021-009

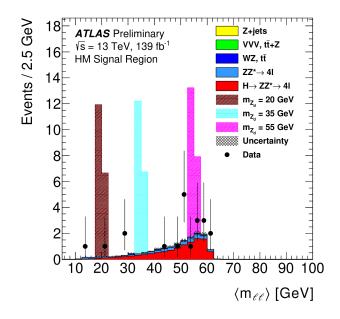
#### Incomplete list of additional ATLAS BSM Higgs sector searches

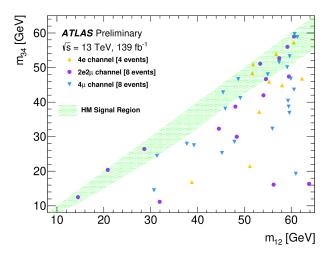
| Channel                                                | Luminosity               | Result                                            |
|--------------------------------------------------------|--------------------------|---------------------------------------------------|
| $H^0 \rightarrow \gamma \gamma$                        | $139~{\rm fb}^{-1}$      | Mass-dependent limits                             |
| $tbH^{\pm}, H^{\pm}  ightarrow tb$                     | $139~{ m fb}^{-1}$       | Limits in range 0.036–3.6 pb                      |
| $\overline{H^-H^{++} \rightarrow W^-} ZW^+W^+$         | $139~{ m fb}^{-1}$       | Limits up to 230 GeV                              |
| $H^{}H^{++} \rightarrow W^{-}W^{-}W^{+}W^{+}$          | $139~{ m fb}^{-1}$       | Limits up to 350 GeV                              |
| $\overline{A \to Z H^0 \to \ell \ell (bb/WW)}$         | $139~{ m fb}^{-1}$       | Limits in range 6.2–380/23–8900 fb                |
| $H^0  ightarrow ZZ  ightarrow \ell\ell(\ell\ell/ u u)$ | $139~{ m fb}^{-1}$       | Limits in range 1.9–87 fb for spin-0 $H^0$ in NWA |
| H  ightarrow aa $ ightarrow$ bbbb                      | $36 \text{ fb}^{-1}$     | Limits as stringent as 0.71 pb                    |
| $H \rightarrow Za \rightarrow \ell \ell j$             | $139~{ m fb}^{-1}$       | Limits in range 17–340 pb                         |
| $H^0 \to \tau \tau$                                    | $139 \ \mathrm{fb^{-1}}$ | MSSM tan $\beta$ -dependent limits                |

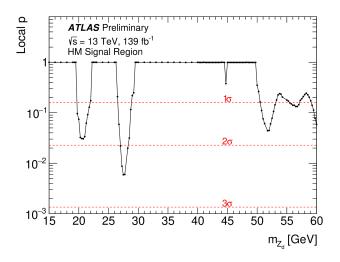
 $H^0$  is a heavy BSM Higgs boson H is the observed 125 GeV Higgs boson Limits are CL<sub>S</sub> upper limits at 95% CL

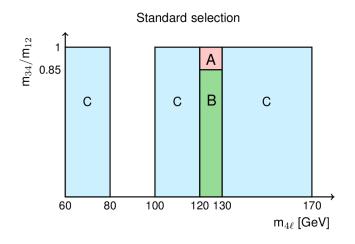

# **Backup Slides**

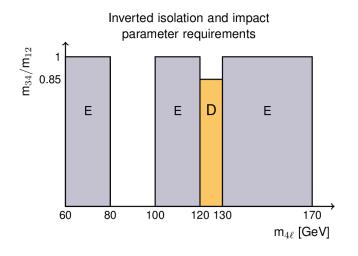

 Searches in this talk have limits set at the 95% confidence level (CL) using the CL<sub>S</sub> procedure

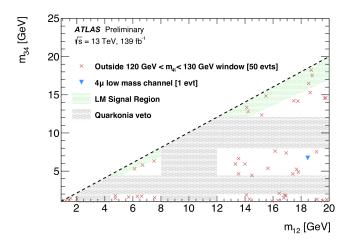

The test statistic used is based on the profile likelihood ratio

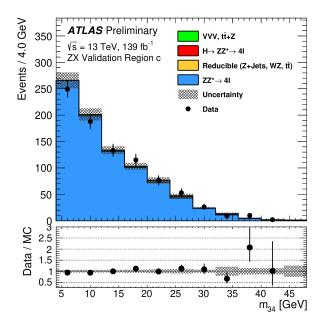

Asymptotic formulae are often used

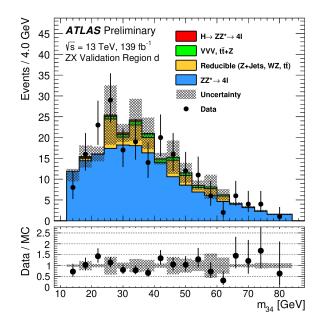

# $H \rightarrow XX/ZX \rightarrow 4\ell$ Searches

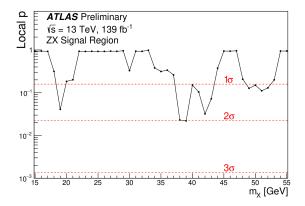


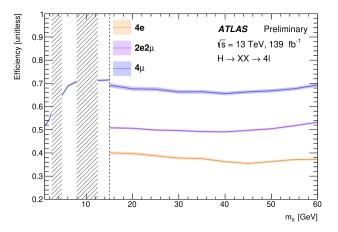



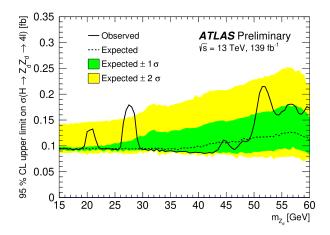



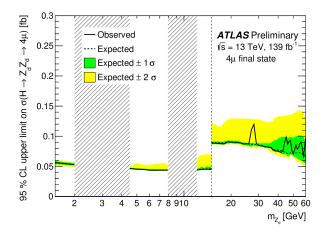



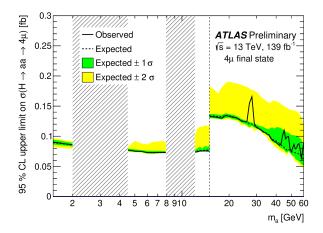



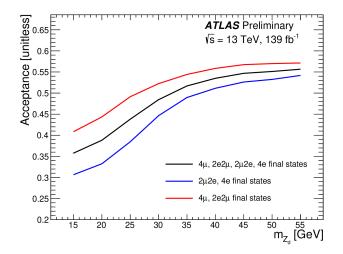



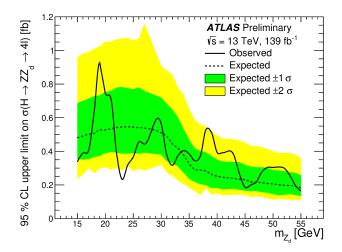



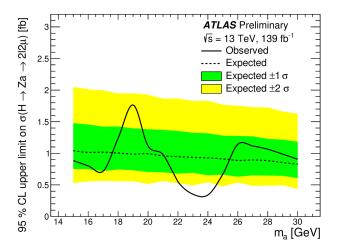



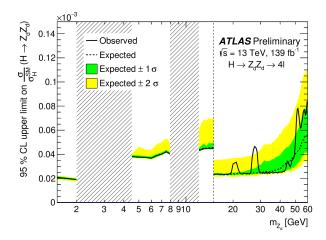



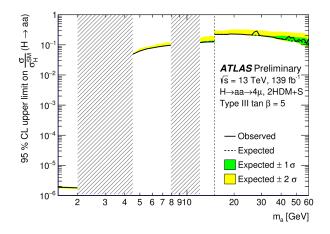



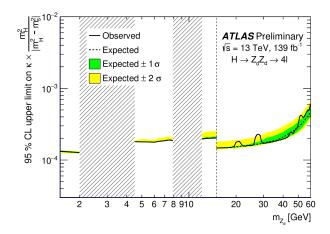



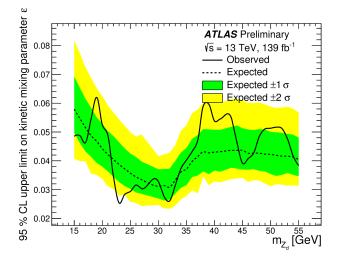



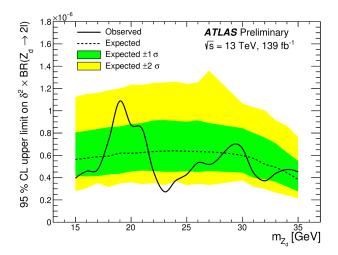









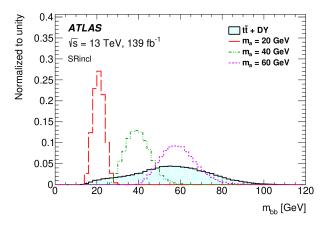


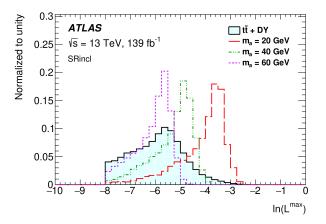


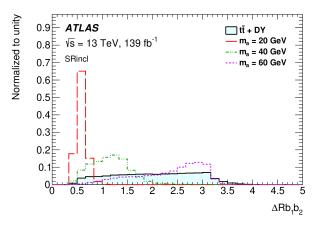

| Process                         | ME generator      | ME PDF         | PS/UE/HF model | UE tune        |
|---------------------------------|-------------------|----------------|----------------|----------------|
| $H \rightarrow Z_d Z_d / Z Z_d$ | MadGraph5_aMC@NLO | NNPDF2.31o     | Pythia/EvtGen  | A14            |
| $H \rightarrow aa$              | Powheg Box        | PDF4LHC15 NNLO | Pythia/EvtGen  | AZNLO          |
|                                 |                   |                |                |                |
| ggF                             | Powheg Box        | PDF4LHC15 NNLO | Pythia/EvtGen  | AZNLO          |
| VBF                             | Powheg Box        | CT10 NLO       | Pythia/EvtGen  | AZNLO          |
| VH                              | Рутніа            | NNPDF2.31o     | Pythia/EvtGen  | A14            |
| ggZH                            | Powheg Box        | NNPDF3.0nlo    | Pythia/EvtGen  | AZNLO          |
| $b\bar{b}H$                     | MadGraph5_aMC@NLO | NNPDF2.31o     | Pythia/EvtGen  | A14            |
| tīH                             | Powheg Box        | NNPDF2.31o     | Pythia/EvtGen  | A14            |
| ZZ                              | Sherpa            | NNPDF3.0nnlo   | Sherpa         | SHERPA default |
| VVV                             | Sherpa            | NNPDF3.0nnlo   | Sherpa         | SHERPA default |
| tīZ                             | Sherpa            | NNPDF3.0nnlo   | Sherpa         | SHERPA default |
| Z + jets                        | Sherpa            | NNPDF3.0nnlo   | Sherpa         | SHERPA default |
| tī                              | Powheg Box        | NNPDF3.0nlo    | Pythia/EvtGen  | A14            |
| WZ                              | Powheg Box        | CT10 NLO       | Pythia/EvtGen  | A14            |

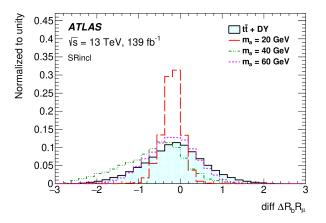
|                                 |                    | Single Z (ZX) analysis<br>$H \rightarrow ZX \rightarrow 4\ell \ (\ell = e, \mu)$                                                                                                                                                                                                                                                                                                                                                                                                                                         | High-mass (HM) analysis<br>$H \rightarrow XX \rightarrow 4\ell \ (\ell = e, \mu)$                                                                                               | Low-mass (LM) analysis<br>$H \rightarrow XX \rightarrow 4\mu$                                                                                                                                                                                    |  |
|---------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mass range                      |                    | $15\mathrm{GeV} < m_X < 55\mathrm{GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $15 \text{ GeV} < m_X < 60 \text{ GeV}$                                                                                                                                         | $1 \text{ GeV} < m_X < 15 \text{ GeV}$                                                                                                                                                                                                           |  |
| Baseline electrons              |                    | $p_T > 7 \text{ GeV}$ and $ \eta  < 2.47$<br>Loose identification with an IBL hit<br>$ z_0 \sin \theta  < 0.5 \text{ mm}$                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 | _                                                                                                                                                                                                                                                |  |
| Baseline muons                  |                    | $p_T > 5$ GeV (15 GeV if calo-tagged) and $ \eta  < 2.7$<br>Loose identification<br>$ z_0 \sin \theta  < 0.5$ mm and $d_0 < 1$ mm (except for standalone muons)                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |  |
| Quadruplet selection            |                    | Require at least one quadruptlet consisting of two pairs of same flavour opposite-sign leptons<br>Three leading- $p_{T}$ leptons suisfying $p_{T} > 20$ GeV, 15 GeV, 10 GeV<br>Number of calorimeter-tagged muons plus number of standalone muons not greater than 1<br>At least one lepton in the quadruptlet responsible for firing at least one trigger<br>For di-lepton triggers, all leptons of the trigger must match leptons in the quadruptlet<br>Define pairs $m_{T}$ and $m_{T}$ such that $m_{T} - m_{T} < 1$ |                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |  |
|                                 |                    | $\begin{array}{l} 50{\rm GeV} < m_{12} < 106{\rm GeV} \\ 12{\rm GeV} < m_{34} < 115{\rm GeV} \\ m_{14,32} > 5{\rm GeV} (4e/4\mu) \end{array}$                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                               |                                                                                                                                                                                                                                                  |  |
|                                 |                    | $ \Delta R(\ell,\ell') > 0.10 \ (0.20) \ {\rm for same-flavour} \ (different-flavour) \ - \ - \ - \ - \ - \ - \ - \ - \ - \ $                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                 | _                                                                                                                                                                                                                                                |  |
| Quadruplet ranking              |                    | In order $4\mu$ , $2e2\mu$ , $2\mu 2e$ , $4e$<br>Smallest $ m_Z - m_{12} $<br>Smallest $ m_Z - m_{34} $                                                                                                                                                                                                                                                                                                                                                                                                                  | Select quadruplet with smallest $\Delta m_{\ell\ell} =  m_{12} - m_{34} $                                                                                                       |                                                                                                                                                                                                                                                  |  |
| Isolation &<br>impact parameter |                    | Excluding track                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Frack and calorimeter isolation<br>s/clusters from other leptons in the<br>5 for electrons and $d_0/\sigma_{d_0} < 3$ for n                                                     |                                                                                                                                                                                                                                                  |  |
|                                 | $m_{4\ell}$        | $115 \text{ GeV} < m_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e < 130 GeV                                                                                                                                                                     | $120 \text{ GeV} < m_{4\ell} < 130 \text{ GeV}$                                                                                                                                                                                                  |  |
| Event<br>selection              | Z-veto             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{l} 10 \ {\rm GeV} < m_{12,34} < 64 \ {\rm GeV} \\ {\rm For} \ 4e \ {\rm and} \ 4\mu \ {\rm channels:} \\ 5 \ {\rm GeV} < m_{14,23} < 75 \ {\rm GeV} \end{array}$ | _                                                                                                                                                                                                                                                |  |
|                                 | Heavy-flavour veto | $- \frac{\text{Reject event if } m}{(m_{J/\Psi} - 0.25 \text{ GeV}) \text{ to } (m} \frac{(m_{Y/\Psi} - 0.25 \text{ GeV}) \text{ to } (m)}{(m_{Y(15)} - 0.70 \text{ GeV}) \text{ to } (m)} $                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                 | $n_{\Psi(2S)} + 0.30 \text{ GeV}$ , or                                                                                                                                                                                                           |  |
|                                 | Signal region      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $m_{34}/m_{12} > 0.85 - 0.1125 f(m_{12})$                                                                                                                                       | $\begin{array}{c} 1.2  {\rm GeV} < m_{12,34} < 20  {\rm GeV} \\ m_{34}/m_{12} > 0.85 \\ {\rm Reject \ event \ if \ } m_{12,34} \ {\rm in:} \\ 2  {\rm GeV \ to \ } 4.4  {\rm GeV}, \ {\rm or} \\ 8  {\rm GeV \ to \ } 12  {\rm GeV} \end{array}$ |  |

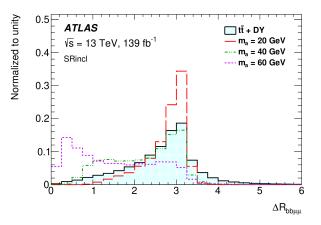
Table 1: Summary of event selection requirements for the ZX, HM, and LM analyses. The quarkonia masses are taken to be  $m_{J/\Psi} = 3.096$  GeV,  $m_{\Psi(2S)} = 3.686$  GeV,  $m_{\Psi(1S)} = 9.461$  GeV, and  $m_{\Upsilon(3S)} = 10.355$  GeV. See text for other definitions.

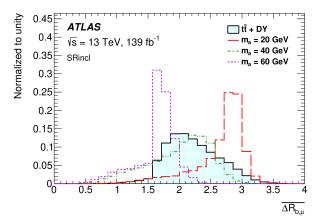

| Process                            | Yield (±stat. ± syst.)          |
|------------------------------------|---------------------------------|
| $\overline{H \to Z Z^* \to 4\ell}$ | $11.12 \pm 0.05 \pm 1.02$       |
| $ZZ^* \rightarrow 4\ell$           | $3.38 \pm 0.05 \pm 0.25$        |
| tī                                 | $0.47 \pm 0.13 \pm 0.09$        |
| Z + jets                           | $0.43 \pm 0.39^{+0.17}_{-0.01}$ |
| $Z+t\bar{t}\to 4\ell$              | $0.09 \pm 0.02 \pm 0.02$        |
| WZ                                 | $0.05 \pm 0.03^{+0.05}_{-0.00}$ |
| VVV/VBS                            | Negligible                      |
| Heavy flavour                      | Negligible                      |
| Total                              | $15.6 \pm 0.4 \pm 1.2$          |
| Data                               | 20                              |

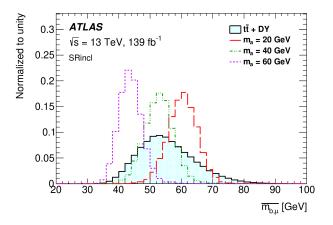

| Process                 | Yield (±stat. ± syst.)   |
|-------------------------|--------------------------|
| $H \to ZZ^* \to 4\mu$   | $0.41 \pm 0.01 \pm 0.03$ |
| $ZZ^* \rightarrow 4\mu$ | $0.22 \pm 0.04 \pm 0.04$ |
| VVV/VBS                 | Negligible               |
| Heavy flavour           | $0.26 \pm 0.09 \pm 0.10$ |
| Total                   | $0.89 \pm 0.10 \pm 0.11$ |
| Data                    | 0                        |

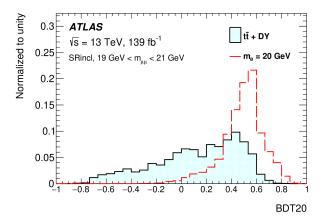

| Process                  |                         | Yield (±stat. ± syst.)   | )                       |
|--------------------------|-------------------------|--------------------------|-------------------------|
|                          | $2\ell 2\mu$            | $2\ell 2e$               | Total                   |
| $H \to Z Z^* \to 4\ell$  | $127.9 \pm 0.1 \pm 3.6$ | $76.1 \pm 0.1 \pm 10.2$  | $204.0 \pm 0.2 \pm 12.$ |
| $ZZ^* \rightarrow 4\ell$ | $70.2 \pm 0.2 \pm 1.9$  | $33.0 \pm 0.2 \pm 3.6$   | $103.3 \pm 0.3 \pm 4.0$ |
| Reducible                | $4.9\pm0.1\pm0.3$       | $5.8\pm0.3\pm0.6$        | $10.7 \pm 0.3 \pm 1.0$  |
| $VVV, t\bar{t} + Z$      | $1.1 \pm 0.1 \pm 0.04$  | $0.7\pm0.1\pm0.1$        | $1.8\pm0.1\pm0.1$       |
| Total                    | $204.1 \pm 0.3 \pm 5.5$ | $115.6 \pm 0.5 \pm 13.8$ | $319.7 \pm 0.5 \pm 17.$ |
| Data                     | 237                     | 119                      | 356                     |

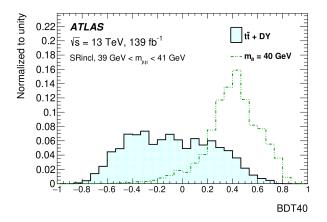

|            | Single Z (ZX) analysis<br>$H \rightarrow XZ \rightarrow 4\ell \ (\ell = e, \mu)$                                                                                     | High-mass (HM) analysis<br>$H \rightarrow XX \rightarrow 4\ell \ (\ell = e, \mu)$                                                                                                                                   | Low-mass (LM) analysis<br>$H \rightarrow XX \rightarrow 4\mu$                    |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| Mass range | $15 \text{ GeV} < m_X < 55 \text{ GeV}$                                                                                                                              | $15\mathrm{GeV} < m_X < 60\mathrm{GeV}$                                                                                                                                                                             | $1 \text{ GeV} < m_X < 15 \text{ GeV}$                                           |  |  |
| Electrons  |                                                                                                                                                                      | $p_{\rm T} > 7 { m GeV} \qquad  \eta  < 2.5$                                                                                                                                                                        |                                                                                  |  |  |
| Muons      |                                                                                                                                                                      | $p_{\rm T} > 5 { m GeV}$ $ \eta  < 2.7$                                                                                                                                                                             |                                                                                  |  |  |
| Quadruplet | Three leading- $p_{\rm T}$ leptons satisfying $p_{\rm T} > 20$ GeV, 15 GeV, 10 GeV                                                                                   |                                                                                                                                                                                                                     |                                                                                  |  |  |
|            | $\Delta R > 0.10 (0.20)$ between same-fl                                                                                                                             | _                                                                                                                                                                                                                   |                                                                                  |  |  |
| -          | _                                                                                                                                                                    | $m_{34}/m_{12} > 0.85 - 0.1125 f(m_{12})$                                                                                                                                                                           | $m_{34}/m_{12} > 0.85$                                                           |  |  |
|            | $\begin{array}{l} 50 \; {\rm GeV} < m_{12} < 106 \; {\rm GeV} \\ 12 \; {\rm GeV} < m_{34} < 115 \; {\rm GeV} \\ m_{14,23} > 5 \; {\rm GeV} \; (4e/4\mu) \end{array}$ | 10 GeV < $m_{12,34}$ < 64 GeV<br>For 4 <i>e</i> and 4 $\mu$ channels:<br>5 GeV < $m_{14,23}$ < 75 GeV                                                                                                               | $1.2 \mathrm{GeV} < m_{12,34} < 20 \mathrm{GeV}$                                 |  |  |
|            | _                                                                                                                                                                    | Reject event if $m_{12,34,14,23}$ in either:<br>$(m_{J/\psi} - 0.25 \text{ GeV})$ to $(m_{\psi(2S)} + 0.30 \text{ GeV})$ , or<br>$(m_{\Upsilon(1S)} - 0.70 \text{ GeV})$ to $(m_{\Upsilon(3S)} + 0.75 \text{ GeV})$ |                                                                                  |  |  |
|            | _                                                                                                                                                                    | _                                                                                                                                                                                                                   | Reject event if $m_{12,34}$ in either<br>2 GeV to 4.4 GeV, or<br>8 GeV to 12 GeV |  |  |
|            | $115 { m GeV} < m_{4\ell} < 130 { m GeV}$                                                                                                                            | —                                                                                                                                                                                                                   | _                                                                                |  |  |

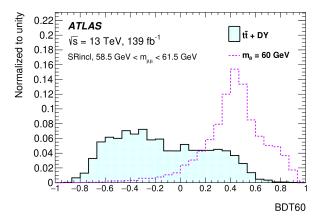

## $H \rightarrow aa \rightarrow bb\mu\mu$ Search

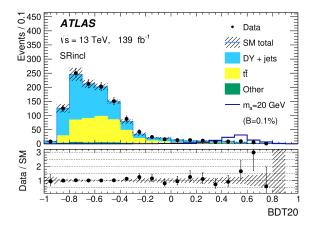


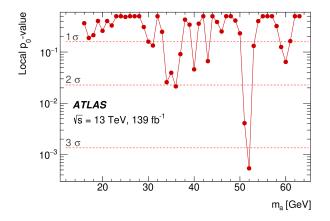



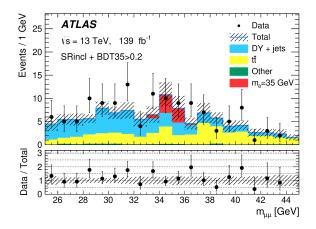



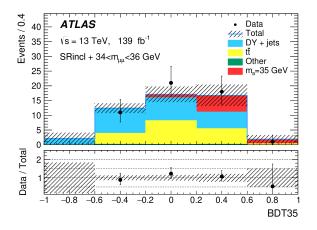



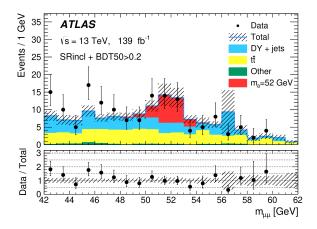



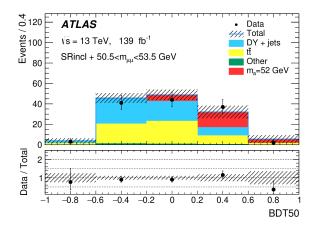



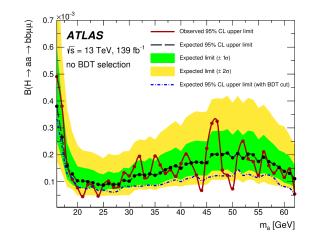



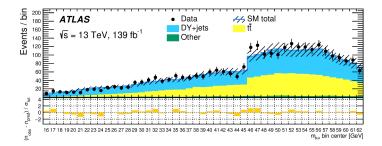



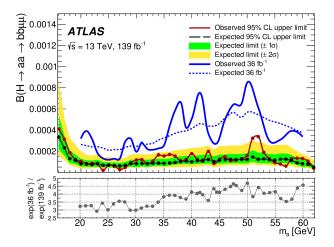



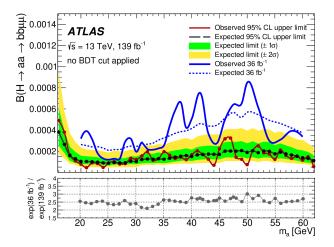



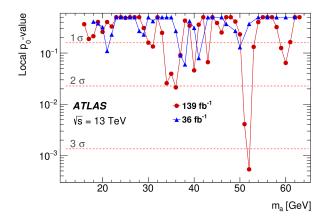



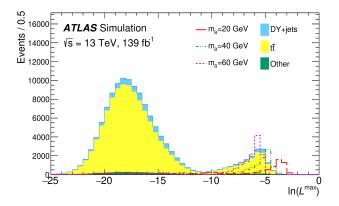



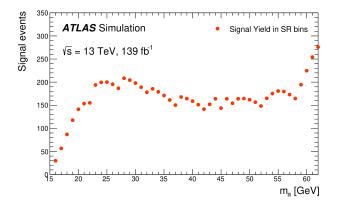














|                               | TCR        | DYCR                      | SRincl                                                   | VR1        | VR2        |  |  |  |  |  |  |  |
|-------------------------------|------------|---------------------------|----------------------------------------------------------|------------|------------|--|--|--|--|--|--|--|
| $m_{\mu\mu}$ [GeV]            |            |                           | [15, 65]                                                 |            |            |  |  |  |  |  |  |  |
| $m_{bb\mu\mu}^{\rm KL}$ [GeV] | [110, 140] | [80, 110] or [140,        | 170]   [110, 140]                                        | [170, 300] | [110, 140] |  |  |  |  |  |  |  |
| $E_{\rm T}^{\rm miss}$ [GeV]  | > 60       | > 60 < 60                 |                                                          |            |            |  |  |  |  |  |  |  |
| $\ln(L^{\max})$               |            | >                         | -8                                                       |            | [-11, -8]  |  |  |  |  |  |  |  |
| SR bins                       | 2-GeV-wi   | SRinc de (3-GeV-wide) $m$ | $1 \& BDTm_a > 0.2$<br>$_{\mu\mu}$ bins for $m_a \leq 4$ |            | > 45 GeV)  |  |  |  |  |  |  |  |

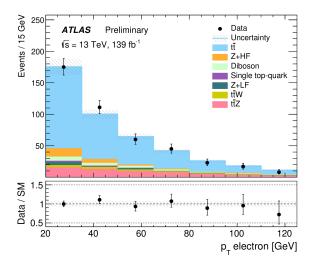
| Category   | Source                     | Total background [%] | Signal [%] |
|------------|----------------------------|----------------------|------------|
| DY         | $BDTm_a$ selection         | 7 - 14               | _          |
|            | normalization              | 5 - 10               | _          |
|            | $m_{\mu\mu}$ shape         | 1-8                  | _          |
|            | kinematics                 | 0.3 - 6              | _          |
|            | background subtraction     | 0.6 - 3              | -          |
| $t\bar{t}$ | hadronization/PS           | 0.3 - 4              | -          |
|            | hard-scatter generation    | 0.2 - 3              | _          |
|            | normalization              | 0.2 - 3              | -          |
| Overall MC | Sample statistics          | 8-40                 | 1-2        |
| Jets       | b-tagging                  | 0.03 - 0.7           | 9-10       |
|            | Jet-energy resolution      | 1 - 3                | 6-7        |
|            | Jet-energy scale           | 1 - 3                | 4-5        |
| Signal     | FSR                        | -                    | 5          |
|            | PS                         | _                    | 4          |
|            | VH contribution            | _                    | 3.5        |
|            | MPI                        | _                    | 3          |
|            | QCD scale                  | -                    | 3          |
|            | ISR                        | -                    | 3          |
|            | ggF cross-section          |                      |            |
|            | - missing higher-order QCD | -                    | 5          |
|            | - PDF & $\alpha_{\rm S}$   | -                    | 3          |

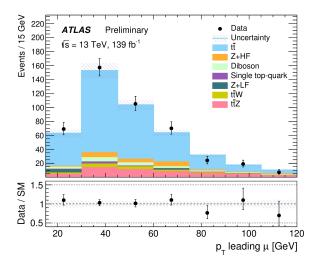
| $m_{\mu\mu}$ bin [GeV] | [15-17]                          | [24-26]                                                     | [34 - 36]                        | [44-46]                          | [50.5-53.5]                                                  | [60.5-63.5]                    |
|------------------------|----------------------------------|-------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------|--------------------------------|
| Observed events        | 6                                | 9                                                           | 19                               | 17                               | 39                                                           | 8                              |
| Total background       | $4.8\pm2.2$                      | $9.0 \pm 1.8$                                               | $11.9\pm1.6$                     | $15.5\pm2.0$                     | $19.3 \pm 2.7$                                               | $9.3\pm1.7$                    |
| DY                     | $4.6 \pm 2.1$                    | $6.4 \pm 1.5$                                               | $5.7 \pm 1.1$                    | $6.4 \pm 1.5$                    | $8.3 \pm 2.1$                                                | $5.3 \pm 1.4$                  |
| $t\bar{t}$ Other       | $0.2 \pm 0.1$<br>$0.03 \pm 0.01$ | $\begin{array}{c} 2.6 \pm 0.8 \\ 0.03 \pm 0.00 \end{array}$ | $6.0 \pm 1.1$<br>$0.24 \pm 0.12$ | $8.5 \pm 1.4$<br>$0.50 \pm 0.40$ | $\begin{array}{c} 10.4 \pm 2.4 \\ 0.50 \pm 0.12 \end{array}$ | $3.5 \pm 0.9 \\ 0.45 \pm 0.19$ |

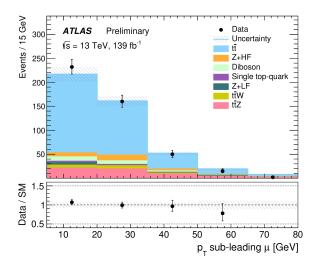
|                                                         |         | $m_a =$   | $16  \mathrm{GeV}$ |                             |         | $m_a = 2$ | 20  GeV |           |  |
|---------------------------------------------------------|---------|-----------|--------------------|-----------------------------|---------|-----------|---------|-----------|--|
|                                                         |         | ggF       | V                  | BF                          | g       | gF        | V       | /BF       |  |
|                                                         | Events  | Rel. eff. | Events             | $\mid$ Rel. eff. $\mid\mid$ | Events  | Rel. eff. | Events  | Rel. eff. |  |
| Total $(\mathcal{L} \times \sigma \times \mathcal{B})$  | 10804.5 |           | 841.1              |                             | 10804.5 |           | 841.1   |           |  |
| Exactly 2 muons                                         | 4110.8  |           | 347.9              |                             | 4142.5  |           | 362.1   |           |  |
| Trigger                                                 | 3657.7  | 0.89      | 309.3              | 0.89                        | 3679.7  | 0.89      | 322.0   | 0.89      |  |
| $15~{\rm GeV} < m_{\mu\mu} < 65~{\rm GeV}$              | 3510.6  | 0.96      | 296.4              | 0.96                        | 3662.2  | 1         | 320.4   | 1         |  |
| OS muons                                                | 3508.5  | 1         | 296.2              | 1                           | 3658.7  | 1         | 320.2   | 1         |  |
| $\geq 2$ jets                                           | 1924.1  | 0.55      | 208.4              | 0.7                         | 2190.4  | 0.6       | 231.0   | 0.72      |  |
| Exactly 2 <i>b</i> -jets                                | 123.8   | 0.064     | 13.4               | 0.064                       | 270.9   | 0.12      | 22.6    | 0.10      |  |
| $E_{\mathrm{T}}^{\mathrm{miss}} < 60~\mathrm{GeV}$      | 111.7   | 0.9       | 11.5               | 0.86                        | 258.3   | 0.95      | 20.6    | 0.91      |  |
| $\ln(L^{\max}) > -8$                                    | 34.6    | 0.31      | 1.7                | 0.15                        | 160.9   | 0.62      | 9.1     | 0.44      |  |
| $110~{\rm GeV} < m_{bb\mu\mu}^{\rm KL} < 140~{\rm GeV}$ | 29.6    | 0.86      | 1.5                | 0.86                        | 149.7   | 0.93      | 8.3     | 0.91      |  |
| $m_{\mu\mu}$ window                                     | 29.1    | 0.98      | 1.4                | 0.98                        | 143.1   | 0.96      | 8.0     | 0.97      |  |
| $\mathrm{BDT} > 0.2$                                    | 28.4    | 0.98      | 1.4                | 0.99                        | 133.6   | 0.93      | 7.7     | 0.96      |  |

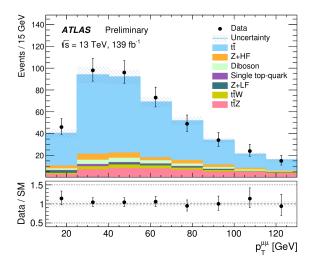
|                                                                 |         | $m_a = 1$ | $30  \mathrm{GeV}$ |           |         | $m_a = 4$ | 40  GeV |           |  |
|-----------------------------------------------------------------|---------|-----------|--------------------|-----------|---------|-----------|---------|-----------|--|
|                                                                 |         | ggF       | V                  | BF        | g       | gF        | V       | /BF       |  |
|                                                                 | Events  | Rel. eff. | Events             | Rel. eff. | Events  | Rel. eff. | Events  | Rel. eff. |  |
| Total $(\mathcal{L} \times \sigma \times \mathcal{B})$          | 10804.5 |           | 841.1              |           | 10804.5 |           | 841.1   |           |  |
| Exactly 2 muons                                                 | 4292.7  |           | 380.9              |           | 4409.2  |           | 390.1   |           |  |
| Trigger                                                         | 3742.5  | 0.87      | 334.0              | 0.88      | 3906.3  | 0.89      | 350.2   | 0.9       |  |
| $15~{\rm GeV} < m_{\mu\mu} < 65~{\rm GeV}$                      | 3739.1  | 1         | 333.6              | 1         | 3904.6  | 1         | 350.0   | 1         |  |
| OS muons                                                        | 3735.1  | 1         | 333.3              | 1         | 3900.4  | 1         | 349.7   | 1         |  |
| $\geq 2$ jets                                                   | 2250.7  | 0.6       | 246.0              | 0.74      | 2309.8  | 0.59      | 261.3   | 0.75      |  |
| Exactly 2 <i>b</i> -jets                                        | 331.6   | 0.15      | 37.4               | 0.15      | 314.5   | 0.14      | 41.0    | 0.16      |  |
| $E_{\mathrm{T}}^{\mathrm{miss}} < 60~\mathrm{GeV}$              | 319.7   | 0.96      | 35.1               | 0.94      | 300.7   | 0.96      | 38.7    | 0.94      |  |
| $\ln(L^{\max}) > -8$                                            | 238.2   | 0.75      | 23.4               | 0.67      | 221.9   | 0.74      | 27.3    | 0.71      |  |
| $\boxed{110~{\rm GeV} < m_{bb\mu\mu}^{\rm KL} < 140~{\rm GeV}}$ | 225.3   | 0.95      | 22.3               | 0.95      | 208.8   | 0.94      | 25.9    | 0.95      |  |
| $m_{\mu\mu}$ window                                             | 197.8   | 0.88      | 19.5               | 0.87      | 164.0   | 0.79      | 20.1    | 0.77      |  |
| $\mathrm{BDT} > 0.2$                                            | 179.3   | 0.91      | 18.7               | 0.96      | 140.2   | 0.85      | 18.7    | 0.93      |  |

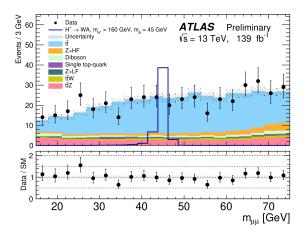
|                                                                 |         | $m_a = -$ | $50  \mathrm{GeV}$ |           |         | $m_a = 0$ | $60  {\rm GeV}$ |           |  |
|-----------------------------------------------------------------|---------|-----------|--------------------|-----------|---------|-----------|-----------------|-----------|--|
|                                                                 |         | ggF       | V                  | BF        | g       | gF        | V               | VBF       |  |
|                                                                 | Events  | Rel. eff. | Events             | Rel. eff. | Events  | Rel. eff. | Events          | Rel. eff. |  |
| Total $(\mathcal{L} \times \sigma \times \mathcal{B})$          | 10804.5 |           | 841.1              |           | 10804.5 |           | 841.1           |           |  |
| Exactly 2 muons                                                 | 4463.0  |           | 392.7              |           | 4428.8  |           | 395.3           |           |  |
| Trigger                                                         | 3952.2  | 0.89      | 357.8              | 0.91      | 3903.0  | 0.88      | 362.8           | 0.92      |  |
| $15~{\rm GeV} < m_{\mu\mu} < 65~{\rm GeV}$                      | 3950.5  | 1         | 357.7              | 1         | 3898.2  | 1         | 362.4           | 1         |  |
| OS muons                                                        | 3946.0  | 1         | 357.3              | 1         | 3894.9  | 1         | 362.1           | 1         |  |
| $\geq 2$ jets                                                   | 2369.8  | 0.6       | 268.5              | 0.75      | 2512.4  | 0.65      | 278.0           | 0.77      |  |
| Exactly 2 <i>b</i> -jets                                        | 318.1   | 0.13      | 41.5               | 0.15      | 422.3   | 0.17      | 46.1            | 0.17      |  |
| $E_{\mathrm{T}}^{\mathrm{miss}} < 60~\mathrm{GeV}$              | 304.9   | 0.96      | 38.9               | 0.94      | 406.5   | 0.96      | 43.4            | 0.94      |  |
| $\ln(L^{\max}) > -8$                                            | 230.9   | 0.76      | 27.3               | 0.7       | 329.8   | 0.81      | 31.7            | 0.73      |  |
| $\boxed{110~{\rm GeV} < m^{\rm KL}_{bb\mu\mu} < 140~{\rm GeV}}$ | 218.4   | 0.95      | 25.8               | 0.95      | 314.7   | 0.95      | 30.2            | 0.95      |  |
| $m_{\mu\mu}$ window                                             | 183.1   | 0.84      | 21.7               | 0.84      | 242.5   | 0.77      | 22.7            | 0.75      |  |
| $\mathrm{BDT} > 0.2$                                            | 142.6   | 0.78      | 19.4               | 0.89      | 204.0   | 0.84      | 20.7            | 0.91      |  |

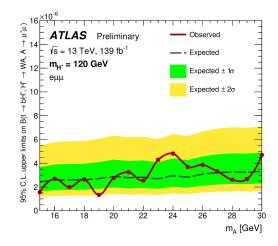

## $tt ightarrow tH^{\pm}b, \ H^{\pm} ightarrow$ WA, $A ightarrow \mu \mu$ Search

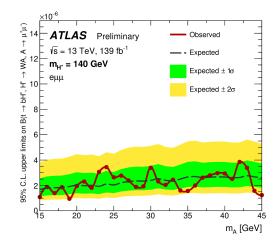

**t***t***CR**: same-sign muons

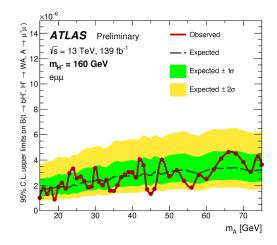

**Z** + HF CR: 78 <  $m_{\mu\mu}$  < 102 GeV, electron  $p_{\rm T}$  < 20 GeV

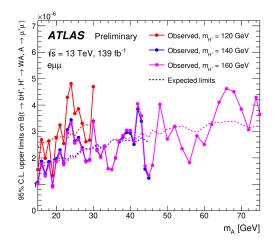

•  $t\bar{t}Z$  CR: 78 <  $m_{\mu\mu}$  < 102 GeV, electron  $p_{\rm T}$  > 20 GeV

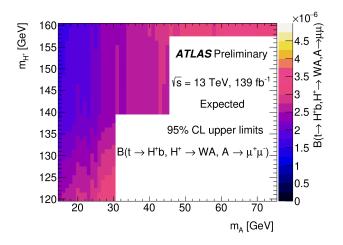

**VR**: no requirements on sign of muons,  $30 < m_{e\mu} < 110$  GeV for the electron and leading muon

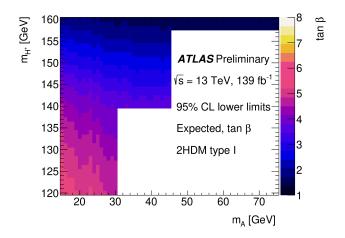




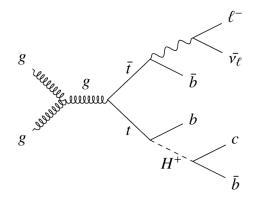


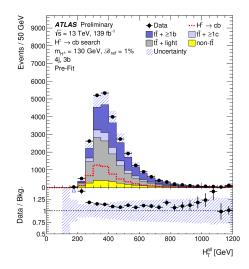


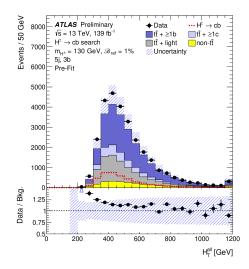


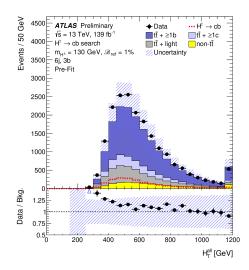


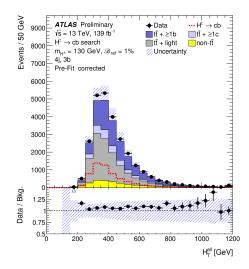

|           | Event selection                                                                                                                                                               |                                                         |  |  |  |  |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Trigger   | single muon                                                                                                                                                                   | di-muon                                                 |  |  |  |  |  |  |  |  |  |
|           | $p_{\rm T}^{\rm leading} > 27 \text{ GeV}, p_{\rm T}^{\rm subleading} > 5 \text{ GeV}  p_{\rm T}^{\rm leading} > 15 \text{ GeV}, p_{\rm T}^{\rm subleading} > 15 \text{ GeV}$ |                                                         |  |  |  |  |  |  |  |  |  |
| Muons     | exactly 2, opposite sign                                                                                                                                                      |                                                         |  |  |  |  |  |  |  |  |  |
|           |                                                                                                                                                                               | [GeV] < 77                                              |  |  |  |  |  |  |  |  |  |
|           | $p_{\rm T}(\mu^{\rm SS})/p_{\rm T}$                                                                                                                                           | $p_{\rm T}(\mu^{\rm SS})/p_{\rm T}(\mu^{\rm OS}) > 0.2$ |  |  |  |  |  |  |  |  |  |
| Electrons | exactly 1, j                                                                                                                                                                  | $p_{\rm T} > 20 { m GeV}$                               |  |  |  |  |  |  |  |  |  |
| Jets      | $\geq 3, p_{\rm T} > 20  {\rm GeV}$                                                                                                                                           |                                                         |  |  |  |  |  |  |  |  |  |
|           | $\geq 1 b$ -t                                                                                                                                                                 | agged jet                                               |  |  |  |  |  |  |  |  |  |

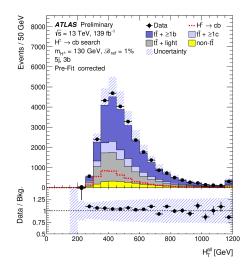

| Source                                   | Total background [%] | Signal [%] |
|------------------------------------------|----------------------|------------|
| $t\bar{t}$ : hadronization/parton-shower | 9–17                 | -          |
| $t\bar{t}$ : hard-scatter generation     | 7–13                 | -          |
| $t\bar{t}$ : ISR/FSR                     | 1–4                  | -          |
| $t\bar{t}$ : normalization               | 4–7                  | -          |
| ttZ: normalization                       | 3–8                  | -          |
| Diboson: cross-section                   | 2-7                  | -          |
| MC statistics                            | 4–7                  | 2          |
| Jet energy resolution                    | 3–6                  |            |
| Signal: PDF & $\alpha_s$                 | -                    | 4          |
| Signal: QCD scale                        | -                    | 3.5        |
| Signal: mass                             | -                    | 3          |

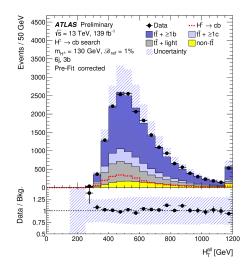

| Reg        | ions       | (    | CRZ             | (    | CR <i>tī</i>    | (   | $CRt\bar{t}Z$ |                 | VR           | SRIn            | clusive      |
|------------|------------|------|-----------------|------|-----------------|-----|---------------|-----------------|--------------|-----------------|--------------|
| Observe    | d events   | :    | 803             |      | 190             |     | 635           |                 | 529          | 465             |              |
|            | Total      | 803  | ±28             | 190  | ±14             | 635 | ±25           | 541             | ±43          | 470             | ±37          |
|            | tī         | 136  | ±21             | 170  | ±14             | 97  | ±19           | 388             | ±46          | 320             | ±39          |
| Fitted     | Z+HF       | 491  | ±49             | 0.72 | $2 \pm 0.16$    | 43  | ± 8           | 18              | ± 6          | 29              | ± 6          |
| background | Z+LF       | 84   | ±29             | 0.41 | ± 0.14          | 12  | ± 4           | 2.82            | $2 \pm 0.98$ | 13              | ± 4          |
| events     | tīZ        | 52   | ±14             | 6.40 | ) ± 1.64        | 327 | ±83           | 76              | ±19          | 64              | ±16          |
|            | Diboson    | 34   | ±17             | 0.58 | $3 \pm 0.29$    | 147 | ±73           | 32              | ±16          | 22              | ±11          |
|            | W+jets     | 0.01 | $\pm 0.01$      | 0.40 | $) \pm 0.39$    | 0   | ± 0           | 0.08            | $8 \pm 0.07$ | 0.49            | $0 \pm 0.48$ |
|            | Single top | 4.13 | $4.13 \pm 0.29$ |      | $4.38 \pm 0.23$ |     | $9 \pm 0.12$  | $9.00 \pm 0.46$ |              | $6.17 \pm 0.33$ |              |
|            | tīW        | 1.06 | $\pm 0.15$      | 7.43 | $3 \pm 0.97$    | 6.4 | $2 \pm 0.83$  | 14              | ± 2          | 16              | $\pm 2$      |
|            | Total      | 762  | ±93             | 181  | ± 9             | 505 | ±76           | 497             | ±31          | 433             | ±23          |
|            | tī         | 131  | ±15             | 163  | ± 9             | 93  | ±14           | 373             | ±22          | 308             | ±18          |
| Pre-Fit    | Z+ HF      | 475  | ±79             | 0.69 | $0.08 \pm 0.08$ | 42  | ± 6           | 18              | ± 7          | 28              | ± 3          |
| background | Z+ LF      | 84   | ±30             | 0.41 | ± 0.14          | 12  | ± 4           | 2.82            | $2 \pm 0.99$ | 13              | ± 4          |
| events     | tīZ        | 32   | ± 2             | 3.97 | $t \pm 0.12$    | 202 | ± 3           | 47              | ± 1          | 40              | ± 1          |
|            | Diboson    | 34   | ±17             | 0.58 | $3 \pm 0.29$    | 147 | ±74           | 32              | ±16          | 23              | ±11          |
|            | W+jets     | 0.01 | $\pm 0.01$      | 0.40 | $0 \pm 0.40$    | 0   | $\pm 0$       | 0.08            | $3 \pm 0.07$ | 0.49            | $0 \pm 0.49$ |
|            | Single top | 4.13 | ± 0.29          | 4.38 | $3 \pm 0.23$    | 2.3 | $9 \pm 0.12$  | 9.00            | $) \pm 0.47$ | 6.17            | $\pm 0.33$   |
|            | tīW        | 1.06 | $\pm 0.15$      | 7.43 | $8 \pm 0.97$    | 6.4 | $2 \pm 0.84$  | 14              | $\pm 2$      | 16              | ± 2          |

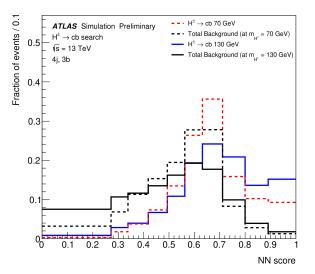

| Masses, GeVUpper limits on $\mathcal{B}$ (×10 <sup>-6</sup> ), 95% CI |       |          |             |             |          |                       |       | Lower limits on tan $\beta$ , 95% CL |          |  |  |
|-----------------------------------------------------------------------|-------|----------|-------------|-------------|----------|-----------------------|-------|--------------------------------------|----------|--|--|
| $m_{H^+}$                                                             | $m_A$ | observed | -2 <i>o</i> | -1 $\sigma$ | expected | $+1 \sigma +2 \sigma$ |       | observed                             | expected |  |  |
| 100                                                                   | 15    | 6.85     | 5.11        | 7.17        | 9.96     | 12.61                 | 18.53 | 4.37                                 | 3.63     |  |  |
| 120                                                                   | 15    | 1.55     | 1.16        | 1.62        | 2.40     | 3.65                  | 5.45  | 7.03                                 | 5.69     |  |  |
| 120                                                                   | 30    | 4.69     | 1.67        | 2.30        | 3.32     | 4.89                  | 7.08  | 3.99                                 | 4.80     |  |  |
| 140                                                                   | 15    | 1.08     | 0.80        | 1.12        | 1.67     | 2.54                  | 3.79  | 5.62                                 | 4.54     |  |  |
| 140                                                                   | 30    | 3.39     | 1.21        | 1.66        | 2.40     | 3.54                  | 5.11  | 3.13                                 | 3.77     |  |  |
| 140                                                                   | 45    | 1.24     | 1.34        | 1.82        | 2.58     | 3.72                  | 5.27  | 5.31                                 | 3.72     |  |  |
| 160                                                                   | 15    | 1.01     | 0.75        | 1.06        | 1.57     | 2.39                  | 3.57  | 2.40                                 | 1.93     |  |  |
| 160                                                                   | 30    | 3.35     | 1.20        | 1.65        | 2.37     | 3.50                  | 5.06  | 1.35                                 | 1.55     |  |  |
| 160                                                                   | 45    | 1.34     | 1.45        | 1.97        | 2.79     | 4.02                  | 5.70  | 2.12                                 | 1.47     |  |  |
| 160                                                                   | 60    | 2.51     | 1.69        | 2.27        | 3.17     | 4.49                  | 6.24  | 1.55                                 | 1.41     |  |  |
| 160                                                                   | 75    | 3.64     | 1.72        | 2.31        | 3.21     | 4.54                  | 6.28  | 1.30                                 | 1.37     |  |  |

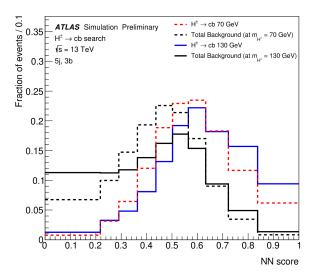

|                                                                      | H16    | H160a15 |        | H160a45 |        | 0a75    | H14    | 0a15    | H12    | 0a15    | H120a30 |         |
|----------------------------------------------------------------------|--------|---------|--------|---------|--------|---------|--------|---------|--------|---------|---------|---------|
|                                                                      | events | eff., % | events  | eff., % |
| $\mathcal{L} \times \sigma \times \mathcal{B}$                       | 222.1  | 100     | 224.4  | 100     | 220.1  | 100     | 222.9  | 100     | 222.1  | 100     | 216.4   | 100     |
| $\mathcal{L} \times \sigma \times \mathcal{B} \times \epsilon_{gen}$ | 135.5  | 61.0    | 141.4  | 63.0    | 140.9  | 64.0    | 138.2  | 62.0    | 142.1  | 64.0    | 145.0   | 67.0    |
| = 2 muons                                                            | 55.8   | 25.1    | 62.3   | 27.7    | 68.8   | 31.2    | 51.1   | 22.9    | 43.6   | 19.6    | 50.3    | 23.2    |
| muon $p_{\rm T}$ selection                                           | 45.0   | 20.3    | 54.0   | 24.1    | 63.2   | 28.7    | 37.8   | 17.0    | 27.6   | 12.4    | 30.6    | 14.2    |
| ≥ 3 jets, 20 GeV                                                     | 36.7   | 16.5    | 44.4   | 19.8    | 52.0   | 23.6    | 32.6   | 14.6    | 24.1   | 10.9    | 27.0    | 12.5    |
| ≥1 b-jet                                                             | 26.9   | 12.1    | 32.5   | 14.5    | 38.5   | 17.5    | 26.6   | 12.0    | 20.7   | 9.3     | 23.1    | 10.7    |
| OS muons                                                             | 24.2   | 10.9    | 29.9   | 13.3    | 36.1   | 16.4    | 23.3   | 10.4    | 16.7   | 7.5     | 19.1    | 8.8     |
| =1 electron                                                          | 5.3    | 2.4     | 6.8    | 3.0     | 8.2    | 3.7     | 4.9    | 2.2     | 3.4    | 1.5     | 4.1     | 1.9     |
| electron $p_T > 20 \text{ GeV}$                                      | 4.6    | 2.1     | 5.9    | 2.6     | 7.2    | 3.3     | 4.2    | 1.9     | 3.0    | 1.4     | 3.5     | 1.6     |
| mass window                                                          | 4.2    | 1.9     | 4.8    | 2.1     | 5.2    | 2.4     | 3.8    | 1.7     | 2.6    | 1.2     | 2.9     | 1.3     |
| $\frac{p_{\mathrm{T}}(\mu^{SS})}{p_{\mathrm{T}}(\mu^{OS})} > 0.2$    | 3.8    | 1.7     | 4.4    | 2.0     | 4.9    | 2.2     | 3.5    | 1.6     | 2.4    | 1.1     | 2.6     | 1.2     |

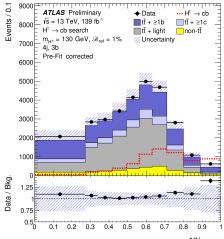

## $tt \rightarrow tH^{\pm}b, \ H^{\pm} \rightarrow cb$ Search



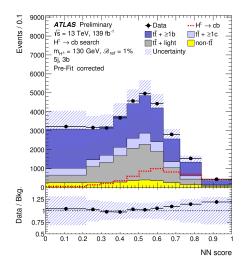



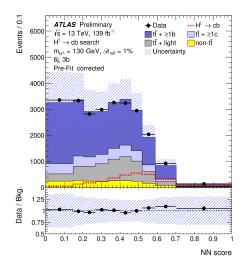



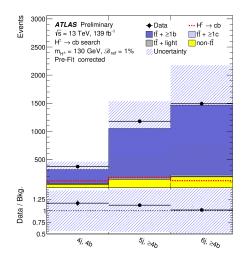



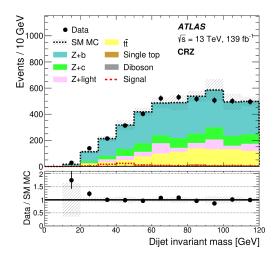


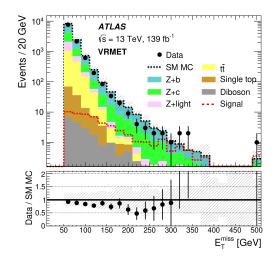



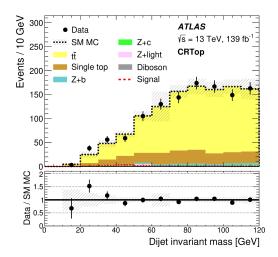



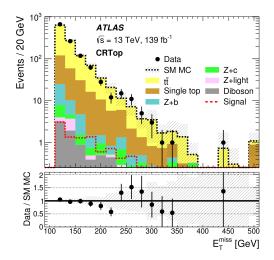



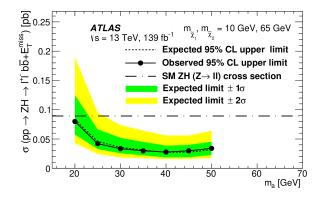


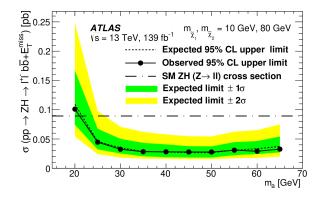


NN score

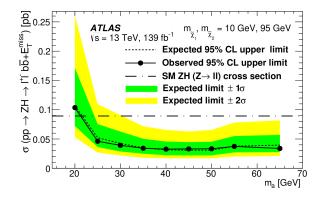


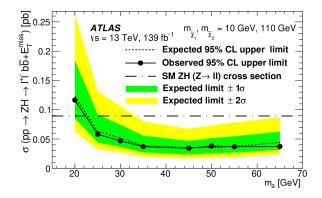



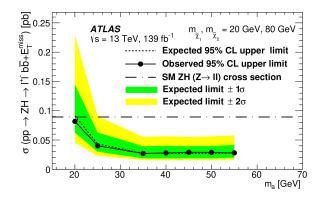



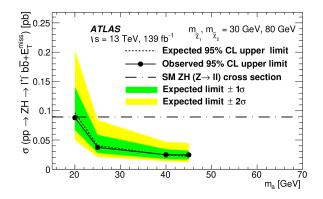


## $H \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} a \rightarrow bb + MET \text{ Search}$

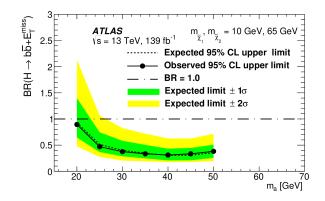


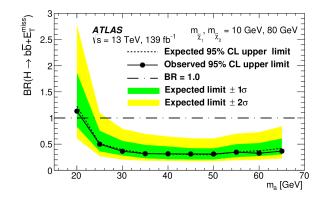



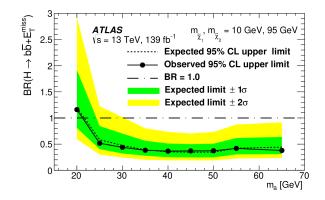



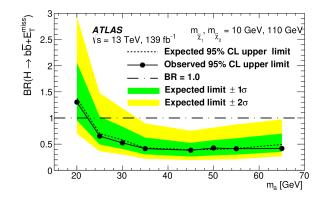



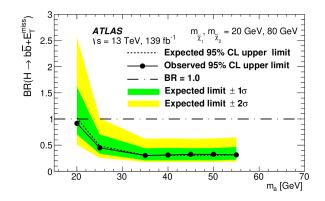



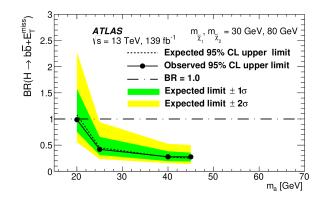





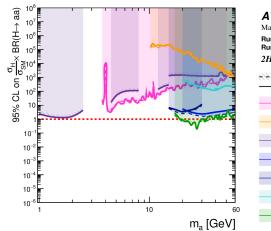




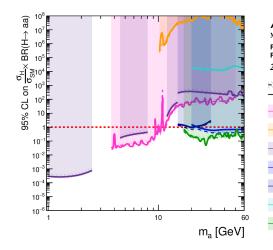




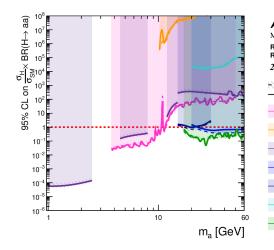

| Process                          | Generator                                           | Parton shower                           | PDF                                   | Tune                                | Normalization                                 |  |  |
|----------------------------------|-----------------------------------------------------|-----------------------------------------|---------------------------------------|-------------------------------------|-----------------------------------------------|--|--|
| Nominal samples                  |                                                     |                                         |                                       |                                     |                                               |  |  |
| $\frac{t\overline{t}}{Z}$ + jets | Powheg Box v2 [39,40,41,42,43]<br>Sherpa 2.2.1 [55] | Pythia 8.230 [44]<br>Sherpa 56,57,58,59 | NNPDF3.Onlo [45]<br>NNPDF3.Onnlo [45] | A14 [46], NNPDF2.310 [47]<br>SHERPA | NNLO+NNLL [48,49,50,51,52,53,54]<br>NNLO [60] |  |  |
| Single-top $(Wt)$<br>Diboson     | Powheg Box v2 [61]<br>Sherpa 2.2.1–2.2.2            | Pythia 8.230<br>Sherpa                  | NNPDF3.Onlo<br>NNPDF3.Onnlo           | A14, NNPDF2.31o<br>SHERPA           | NLO+NNLL [62]<br>NLO                          |  |  |
| NMSSM signal                     | Powheg Box v2                                       | Pythia 8.210                            | CTEQ6L1 [63]                          | AZNLO [64]                          | NNLO(QCD) +<br>NLO(EWK) [65]                  |  |  |
| Alternative samples              |                                                     |                                         |                                       |                                     |                                               |  |  |
| tī                               | Powheg Box v2                                       | Herwig7 [66,67]                         | NNPDF3.Onlo                           | A14, NNPDF2.31o                     | NNLO+NNLL                                     |  |  |
| $t\overline{t}$                  | MadGraph5_aMC@NLO<br>2.6.0 [68]                     | Pythia 8.230                            | NNPDF3.Onlo                           | A14, NNPDF2.31o                     | NNLO+NNLL                                     |  |  |
| Z + jets                         | MadGraph5_aMC@NLO<br>2.2.2                          | Pythia 8.186 [69]                       | NNPDF3.Onnlo                          | A14, NNPDF2.31o                     | NNLO                                          |  |  |


|                                 | $\mathbf{SR}$ | CRZ       | CRTop               | VRMET     |  |  |  |  |  |
|---------------------------------|---------------|-----------|---------------------|-----------|--|--|--|--|--|
| Number of leptons               |               |           | 2                   |           |  |  |  |  |  |
| Number of jets                  |               |           | $\geq 2$            |           |  |  |  |  |  |
| Number of <i>b</i> -tagged jets |               |           | $\geq 1$            |           |  |  |  |  |  |
| Dilepton $p_{\rm T}$ [GeV]      | > 40          |           |                     |           |  |  |  |  |  |
| $p_{\rm T}$ fraction            |               |           | [0.8, 1.2]          |           |  |  |  |  |  |
| Dilepton mass [GeV]             | [81, 101]     | [81, 101] | [50, 81]  or  > 101 | [81, 101] |  |  |  |  |  |
| $E_{\rm T}^{\rm miss}$ [GeV]    | > 100         | [60, 100] | > 100               | > 50      |  |  |  |  |  |
| Dijet mass [GeV]                | [20, 120]     | [20, 120] | [20, 120]           | > 150     |  |  |  |  |  |

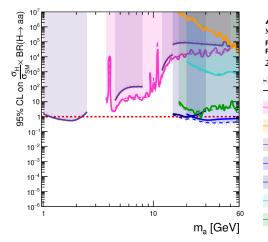
| Requirement                                   | Events passed (unweighted) | Events passed (weighted) |
|-----------------------------------------------|----------------------------|--------------------------|
| Initial number of events                      | 240000                     | -                        |
| Skimming selection                            | 111725                     | -                        |
| Preselection                                  | 52762                      | 2779.0                   |
| Two opposite-sign same-flavour leptons        | 52309                      | 2755.3                   |
| $m_{\ell\ell} \in [81, 101] \; GeV$           | 47340                      | 2494.0                   |
| $p_{\rm T}^{\ell\ell} > 40 { m ~GeV}$         | 39469                      | 2078.5                   |
| $\geq 2$ jets with $p_{\rm T} > 20 { m ~GeV}$ | 20641                      | 1084.7                   |
| $\geq 1$ <i>b</i> -tagged jet                 | 15387                      | 800.5                    |
| $E_{\rm T}^{\rm miss} > 100 \; GeV$           | 4445                       | 231.6                    |
| $p_{\rm T}$ fraction $\in [0.8, 1.2]$         | 2921                       | 151.9                    |
| $m_{jj} \in [20, 120] \; GeV$                 | 2084                       | 108.4                    |


| $m_a, m_{\tilde{\chi}^0_1}, m_{\tilde{\chi}^0_2}~[{\rm GeV}]$ | Acceptance $\times$ Efficiency | Acceptance            | Efficiency        |
|---------------------------------------------------------------|--------------------------------|-----------------------|-------------------|
| 20,10,65                                                      | $0.00485 \pm 0.00015$          | $0.00692 \pm 0.00017$ | $0.701 \pm 0.012$ |
| 25,10,65                                                      | $0.00562 \pm 0.00016$          | $0.00942 \pm 0.00020$ | $0.597 \pm 0.011$ |
| 30, 10, 65                                                    | $0.00668 \pm 0.00017$          | $0.01082 \pm 0.00022$ | $0.618 \pm 0.010$ |
| 35,10,65                                                      | $0.00722 \pm 0.00018$          | $0.01201 \pm 0.00023$ | $0.601\pm0.009$   |
| 40,10,65                                                      | $0.00805 \pm 0.00019$          | $0.01267 \pm 0.00023$ | $0.635 \pm 0.009$ |
| 45,10,65                                                      | $0.00882 \pm 0.00019$          | $0.01349 \pm 0.00024$ | $0.654 \pm 0.009$ |
| 50, 10, 65                                                    | $0.00823 \pm 0.00019$          | $0.01243 \pm 0.00023$ | $0.662\pm0.009$   |
| 20,10,80                                                      | $0.00409 \pm 0.00013$          | $0.00615 \pm 0.00016$ | $0.665\pm0.013$   |
| 25,10,80                                                      | $0.00540 \pm 0.00015$          | $0.00832 \pm 0.00019$ | $0.649 \pm 0.011$ |
| 30,10,80                                                      | $0.00653 \pm 0.00017$          | $0.01058 \pm 0.00021$ | $0.618 \pm 0.010$ |
| 35,10,80                                                      | $0.00736 \pm 0.00018$          | $0.01185 \pm 0.00022$ | $0.622\pm0.009$   |
| 40,10,80                                                      | $0.00833 \pm 0.00019$          | $0.01311 \pm 0.00024$ | $0.636 \pm 0.009$ |
| 45,10,80                                                      | $0.00863 \pm 0.00019$          | $0.01318 \pm 0.00024$ | $0.654 \pm 0.009$ |
| 50,10,80                                                      | $0.00920 \pm 0.00020$          | $0.01422 \pm 0.00025$ | $0.647 \pm 0.008$ |
| 55,10,80                                                      | $0.00877 \pm 0.00019$          | $0.01395 \pm 0.00024$ | $0.629 \pm 0.009$ |
| 60,10,80                                                      | $0.00892 \pm 0.00020$          | $0.01329 \pm 0.00024$ | $0.671 \pm 0.009$ |
| 65,10,80                                                      | $0.00813 \pm 0.00019$          | $0.01219 \pm 0.00023$ | $0.666 \pm 0.009$ |
| 20,10,95                                                      | $0.00387 \pm 0.00013$          | $0.00559 \pm 0.00016$ | $0.692 \pm 0.013$ |
| 25,10,95                                                      | $0.00480 \pm 0.00015$          | $0.00736 \pm 0.00018$ | $0.652 \pm 0.012$ |
| 30,10,95                                                      | $0.00568 \pm 0.00016$          | $0.00875 \pm 0.00019$ | $0.649 \pm 0.011$ |
| 35,10,95                                                      | $0.00631 \pm 0.00017$          | $0.01023 \pm 0.00021$ | $0.617 \pm 0.010$ |
| 40,10,95                                                      | $0.00730 \pm 0.00018$          | $0.01152 \pm 0.00022$ | $0.634 \pm 0.009$ |
| 45,10,95                                                      | $0.00783 \pm 0.00018$          | $0.01241 \pm 0.00023$ | $0.631 \pm 0.009$ |
| 50, 10, 95                                                    | $0.00817 \pm 0.00019$          | $0.01263 \pm 0.00023$ | $0.647 \pm 0.009$ |
| 55,10,95                                                      | $0.00803 \pm 0.00020$          | $0.01227 \pm 0.00024$ | $0.655 \pm 0.010$ |
| 65,10,95                                                      | $0.00820 \pm 0.00019$          | $0.01215 \pm 0.00023$ | $0.675 \pm 0.009$ |

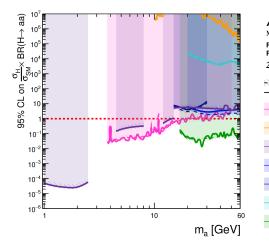
| $m_a, m_{\tilde{\chi}^0_1}, m_{\tilde{\chi}^0_2}~[{\rm GeV}]$ | Acceptance $\times$ Efficiency | Acceptance            | Efficiency          |
|---------------------------------------------------------------|--------------------------------|-----------------------|---------------------|
| 20,10,110                                                     | $0.00352 \pm 0.00013$          | $0.00482 \pm 0.00015$ | $0.730 \pm 0.01368$ |
| 25,10,110                                                     | $0.00419 \pm 0.00014$          | $0.00649 \pm 0.00017$ | $0.645 \pm 0.01265$ |
| 30,10,110                                                     | $0.00508 \pm 0.00015$          | $0.00790 \pm 0.00018$ | $0.643 \pm 0.01143$ |
| 35,10,110                                                     | $0.00567 \pm 0.00016$          | $0.00898 \pm 0.00020$ | $0.631 \pm 0.01077$ |
| 45,10,110                                                     | $0.00723 \pm 0.00018$          | $0.01153 \pm 0.00022$ | $0.627 \pm 0.00949$ |
| 50, 10, 110                                                   | $0.00698 \pm 0.00017$          | $0.01149 \pm 0.00022$ | $0.608 \pm 0.00960$ |
| 55,10,110                                                     | $0.00733 \pm 0.00018$          | $0.01176 \pm 0.00022$ | $0.623 \pm 0.00942$ |
| 65,10,110                                                     | $0.00758 \pm 0.00018$          | $0.01135 \pm 0.00022$ | $0.668 \pm 0.00931$ |
| 20,20,80                                                      | $0.00462 \pm 0.00014$          | $0.00656 \pm 0.00017$ | $0.703 \pm 0.01199$ |
| 25,20,80                                                      | $0.00559 \pm 0.00016$          | $0.00877 \pm 0.00019$ | $0.637 \pm 0.01087$ |
| 35,20,80                                                      | $0.00778 \pm 0.00018$          | $0.01235 \pm 0.00023$ | $0.630 \pm 0.00915$ |
| 40,20,80                                                      | $0.00873 \pm 0.00019$          | $0.01398 \pm 0.00024$ | $0.624 \pm 0.00861$ |
| 45,20,80                                                      | $0.00915 \pm 0.00016$          | $0.01462 \pm 0.00019$ | $0.626 \pm 0.00655$ |
| 50,20,80                                                      | $0.00939 \pm 0.00020$          | $0.01475 \pm 0.00025$ | $0.637 \pm 0.00831$ |
| 55,20,80                                                      | $0.00953 \pm 0.00020$          | $0.01429 \pm 0.00025$ | $0.667 \pm 0.00828$ |
| 20,30,80                                                      | $0.00474 \pm 0.00014$          | $0.00705 \pm 0.00017$ | $0.672 \pm 0.01188$ |
| 25,30,80                                                      | $0.00593 \pm 0.00016$          | $0.00933 \pm 0.00020$ | $0.635 \pm 0.01054$ |
| 40,30,80                                                      | $0.00973 \pm 0.00020$          | $0.01532 \pm 0.00025$ | $0.635 \pm 0.00816$ |
| 45,30,80                                                      | $0.01092 \pm 0.00022$          | $0.01722 \pm 0.00027$ | $0.634 \pm 0.00769$ |
|                                                               |                                |                       |                     |


## Summary Plots: Exotic Higgs Boson Decays

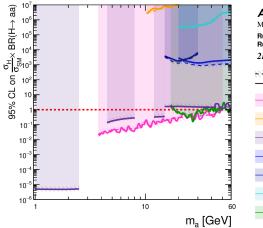




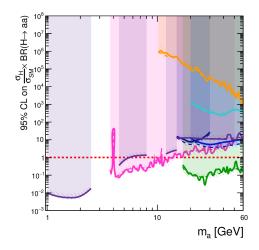


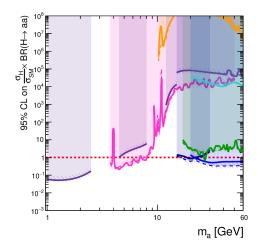


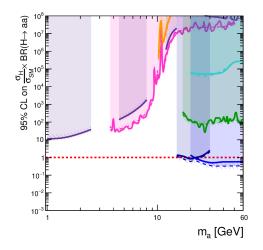


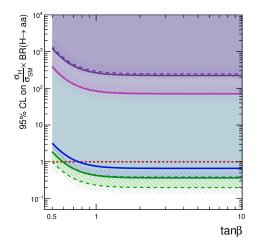


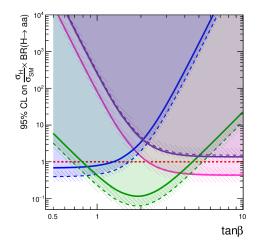


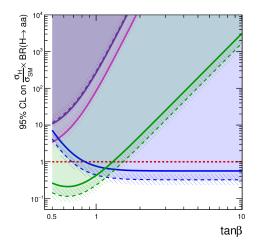




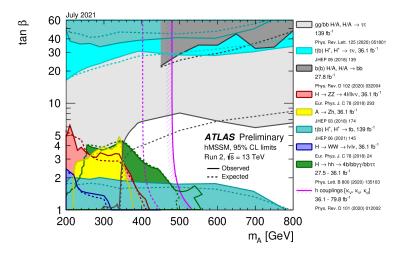


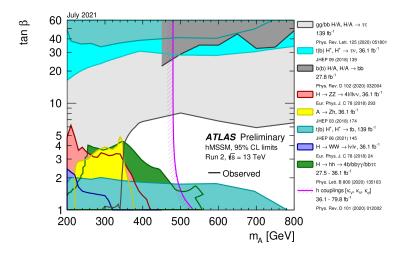



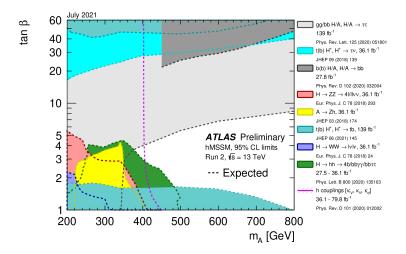







|   |                        | X    |             |              |    |    |      |     |      |    |      |              |                    |                        |                        |        |     |        |             |
|---|------------------------|------|-------------|--------------|----|----|------|-----|------|----|------|--------------|--------------------|------------------------|------------------------|--------|-----|--------|-------------|
|   |                        | e±   | $\mu^{\pm}$ | $\tau^{\pm}$ | Z  | W  | γ    | q/g | C    | b  | Inv. | $\phi, \rho$ | $J/\psi, \Upsilon$ | $\ell^{\pm}\ell^{\mp}$ | $\tau^{\pm}\tau^{\mp}$ | qq̃/gg | 77  | bb     | Other       |
|   | eT                     | [10] | [10]        | [11]         |    |    |      |     |      |    |      |              |                    |                        |                        |        |     |        |             |
|   | $\mu^{\mp}$            |      | [12]        | [11]         |    |    |      |     |      |    |      |              |                    |                        |                        |        |     |        |             |
|   | τ <sup>∓</sup>         |      |             | SM           |    |    |      |     |      |    |      |              |                    |                        |                        |        |     |        |             |
|   | $Z/Z^*$                |      |             |              | SM |    | [13] |     |      |    | -    | -            | [2]                | [6]                    | -                      | [2]    | -   | -      | -           |
|   | $W/W^*$                |      |             |              |    | SM |      |     |      |    |      |              |                    |                        |                        |        |     |        | -           |
|   | γ                      |      |             |              |    |    | SM   |     |      |    | [14] | [15]         | [16]               | [17]                   | -                      | -      | -   | -      | -           |
|   | q/g                    |      |             |              |    |    |      | -   | -    | -  |      |              |                    |                        |                        |        |     |        |             |
|   | с                      |      |             |              |    |    |      |     | [18] |    |      |              |                    |                        |                        |        |     |        |             |
| Y | b                      |      |             |              |    |    |      |     |      | SM |      |              |                    |                        |                        |        |     |        |             |
|   | Inv.                   |      |             |              |    |    |      |     |      |    | [19] |              |                    | -                      | -                      | -      | -   | -      | -           |
|   | $\phi, \rho$           |      |             |              |    |    |      |     |      |    |      | -            | -                  |                        |                        |        |     |        |             |
|   | $J/\psi, \Upsilon$     |      |             |              |    |    |      |     |      |    |      |              | -                  |                        |                        |        |     |        |             |
|   | $\ell^{\pm}\ell^{\mp}$ |      |             |              |    |    |      |     |      |    |      |              |                    | [6]                    | [9]                    | -      | -   | [1]    | -           |
|   | $\tau^{\pm}\tau^{\mp}$ |      |             |              |    |    |      |     |      |    |      |              |                    |                        | -                      | -      | -   | -      | -           |
|   | $q\bar{q}/gg$          |      |             |              |    |    |      |     |      |    |      |              |                    |                        |                        | -      | [5] | -      | -           |
|   | γγ                     |      |             |              |    |    |      |     |      |    |      |              |                    |                        |                        |        | [8] | -      | -           |
|   | bb                     |      |             |              |    |    |      |     |      |    |      |              |                    |                        |                        |        |     | [3, 4] | -           |
|   | Other                  |      |             |              |    |    |      |     |      |    |      |              |                    |                        |                        |        |     |        | Many<br>LLP |

## Summary Plots: hMSSM Interpretations





