

Implications of Li to O data of AMS-02 on our understanding cosmic-ray propagation

Michael Korsmeier Mostly based on: in collaboration with Alessandro Cuoco *Phys.Rev.D* 103 (2021) 10, 103016

Sponsored:

International Union of Pure and Applied Physics Chinese Academy of Sciences China Association for Science and Technology Institute of High Energy Physics,CAS TIANFU Cosmic Ray Research Center, Chengdu, Sichuan Southwest Jiaotong University Chinese Physical Society **Chinese Astronomical Society**

CHENGDU, CHINA Oct. 25-Oct. 29, 2021

Introduction to CR propagation Global fit of CR data from Li to O **Cross section uncertainties Correlations in the AMS-02 data Conclusion & outlook**

Outline

Stockholm University and OKC

FERMI SHOCK ACCELERATION CR shocked medium $q \sim R^{-2.2}$ Vshock

$$\begin{aligned}
 V = -\vec{\nabla}\cdot\vec{j}
 \end{aligned}
 \end{aligned}$$

CR propagation is described by diffusion equations. We use the GALPROP code to solve them.

CR secondaries -> constrain propagation > constrain halo size

Stockholm University and OKC

BASE+v_A

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = q(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2$$

Stockholm University and OKC

We explore 5 different setups for CR propagation:

BASE $BASE+v_A$ **BASE**+inj

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = q(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2$$

Stockholm University and OKC

BASE+inj+v_A-diff.brk **BASE**+inj+ v_A

BASE+v_A

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = q(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2$$

Stockholm University and OKC

We explore 5 different setups for CR propagation:

BASE BASE+v_A **BASE+inj**

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = q(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2$$

Stockholm University and OKC

BASE+inj+ v_A BASE+inj+v_A-diff.brk

We explore 5 different setups for CR propagation:

BASE BASE+v_A **BASE+inj**

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = q(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2$$

Stockholm University and OKC

BASE+inj+ v_A **BASE**+inj+v_A-diff.brk

Stockholm University and OKC

Michael Korsmeier

Global fit

We investigate five propagation setups and perform several consistency checks

We use MultiNest to sample the large parameter space of up to 27 parameters

Parameters for CR propagation and cross section nuisance parameters are sampled at the same time

Results of the global fits

Stockholm University and OKC

Results of the global fits

Stockholm University and OKC

Systematic uncertainty: fragmentation cross sections

Systematic uncertainties in the fragmentation cross sections are larger than those in the measured CR spectra!

 \rightarrow See also: Talk by P. De la Torre Luque

Michael Korsmeier

Systematic uncertainty: fragmentation cross sections

Systematic uncertainties in the fragmentation cross sections are larger than those in the measured CR spectra!

 \rightarrow See also: Talk by P. De la Torre Luque

We perform a global fit and profile over nuisance parameters in the most relevant fragmentation cross sections.

Michael Korsmeier

Systematic uncertainty: fragmentation cross sections

Example: Fragmentation of ¹²C to ¹¹B

15) - $12C \rightarrow 11B$		I
10	- Flux impact:	fit parameter	
1Z	Li 1.38%	$\delta_{\mathrm{XS} ightarrow\mathrm{B}}$	$\delta_{^{16}_{8}\mathrm{O} ightarrow^{10}_{5}\mathrm{B}}$
10	Be 1.43% B 18.07%	$\delta_{ m XS ightarrow m Li}$	$\delta_{{}^{16}_{8}\mathrm{O} ightarrow {}^{6}_{3}\mathrm{Li}}$
[mp		$\delta_{ m XS ightarrow m Be}$	$\delta_{{}^{16}_{8\mathrm{O} o 4}{}^7_4\mathrm{Be}}$
6		$\delta_{ m XS ightarrow m C}$	
5) -	$\delta_{\mathrm{XS} ightarrow \mathrm{N}}$	
		$A_{\rm XS \rightarrow B}$	$A_{{}^{16}_{8}{ m O} ightarrow {}^{10}_{5}{ m B}}$
2	5 -	$A_{\rm XS \rightarrow Li}$	$A_{16\atop 8} O ightarrow {6 \atop 3} Li$
	10^{-1} 10^{0}	$A_{\rm XS \rightarrow Be}$	$A_{\begin{smallmatrix} 16\\8 \text{O} \to \begin{smallmatrix} 7\\4 \text{Be} \end{smallmatrix}}$
	$E_{k/n}$	$A_{\rm XS \rightarrow C}$	
	Systematic un	$A_{\rm XS \rightarrow N}$	

fragmentation cross sections are larger than those in the measured CR spectra!

 \rightarrow See also: Talk by P. De la Torre Luque

Stockholm University and OKC

nuisance parameters in the most relevant fragmentation cross sections.

Cross section nuisance parameters

ん

The default cross section parametrization is "GALPROP 12"

BASE is compatible with the default cross section

> BASE+inj+v_A-diff.brk converges at $\delta_{\rm XS}$ ~0.2

Li cross section are increased by ~25%

Gross section nuisance parameters

The default cross section parametrization is "GALPROP 12"

BASE is compatible with the default cross section

BASE+inj+v_A-diff.brk converges at δ_{XS} ~0.2

Li cross section are increased by ~25%

Cross section nuisance parameters

diff.b1 3ASE + inj + diff.brk. BASE 111 BASE

BASE (col BASE +

BASE+inj+v_A-diff.brk converges at $\delta_{\rm XS}$ ~0.2

Li cross section are increased by ~25%

Correlation in the cosmic-ray data of AMS-02

[Heisig, MK, Winkler; PRR; 2020] 0.14 \bar{p}/p — total systematics cross section $(\bar{p}A)$ 0.12 cross section (pA)— selection 0.10 — unfolding template shape 0.08 $\Delta ar{p}/p$ rigidity scale geomagnetic 0.06 0.04 0.02 10 50 100 500 5 $\mathcal{R}[\mathrm{GV}]$

The AMS-02 collaboration does not provide the **correlation** of the flux data points

Stockholm University and OKC

We model the covariance matrix by splitting the systematic uncertainties into separate contributions and attributing a correlation length to each contribution

> The inclusion of correlation does not change our conclusions!

$$\mathcal{V}_{ij} = \sigma_i \sigma_j \exp\left(-\frac{1}{2}\left(\frac{R_i - R_j}{\ell_{\text{corr}}}\right)^2\right)$$

Parameter constraints

The diffusion coefficient is well constrained above 10 GV

Parameter constraints

The combination of B and Be data allows to constrain z_h

Michael Korsmeier

Precision data requires precision analysis and an honest treatment of systematic uncertainties

CR nuclei from Li to O are consistent with the traditional CR diffusion models

There is no clear preference for one CR propagation model because of uncertainties in the secondary fragmentation cross sections

Small halo heights of $z_h < 3$ kpc are excluded

The diffusion coefficient is well constrained above 10 GeV

Conclusions

Backup

Free parameters

	BASE	BASE BASE+ v_A BASE		$BASE+inj+v_A$	$BASE+inj+v_A-diff.brk.$	prior	
γ_1	$\gamma_1=\gamma_2$	$\gamma_1=\gamma_2$	free	free	free	$[0.0,\ 2.0]$	
γ_2	free	free	free	free	free	[2.1, 2.5]	
$R_{\mathrm{inj},0}$	-	-	free	free	free	[1, 10] GV	
s	-	-	free	free	free	$[0.1,\ 0.7]$	
D_0	free	free	free	free	free	$[1e28, 1e29] \text{ cm}^2 \text{s}^{-1}$	
δ_l	free	free	free	free	$\delta_l = \delta$	[-1, 0]	
δ	free	free	free	free	free	$[0.2,\ 0.7]$	
δ_h	free	free	free	free	free	$[0.2,\ 0.7]$	
$R_{D,0}$	free	free	free	free	_	[1, 10] GV	
$R_{D,1}$	free	free	free	free	free	$[1\mathrm{e}5,5\mathrm{e}5]~\mathrm{GV}$	
$s_{D,0}$	free	free	free	free	_	[0.1, 0.7]	
$v_{0,c}$	free	free	free	free	free	$[0, 50] \mathrm{~km/s}$	
v_A	-	free	-	free	free	$[0, 50] \mathrm{~km/s}$	
Iso. Ab. ${}^{12}_{6}C$	free	free	free	free	free	[3300, 4000]	
Iso. Ab. $^{14}_{7}$ N	free	free	free	free	free	[200, 500]	
Iso. Ab. ¹⁶ ₈ O	free	free	free	free	free	[4200, 5000]	
$arphi_{ m AMS-02}$	free	free	free	free	free	$600{\pm}30~{ m MV}$	
$\# \mathrm{par}$	13	14	16	17	14		

Stockholm University and OKC

TABLE III. Summary of free CR parameters in the five different frameworks adopted to describe CR propagation.

Best fit table

	BASE		BASE(corr) BA		BASI	$SE + v_A$ $BASE + inj$		BASE +	$BASE + inj + v_A = B_A$		$\overrightarrow{\text{BASE} + \text{inj} + v_A - \text{diff.brk. BASE} + \text{inj} + v_A - \text{diff.brk. (corr)}}$			
data set	BCNO	LiBeBCNO	BCNO	LiBeBCNO	BCNO	LiBeBCNO	BCNO	LiBeBCNO	BCNO	LiBeBCNO	BCNO	LiBeBCNO	BCNO	LiBeBCNO
$\# \mathrm{dof}$	252	383	252	383	251	382	249	380	248	379	251	382	251	382
χ^2	72.4	170.0	423.2	593.6	72.8	169.0	67.9	160.7	67.3	158.9	74.2	168.9	415.4	590.2
$\chi^2_{ m N}$	15.9	18.7	148.1	146.9	19.3	17.2	14.8	15.2	19.3	16.5	17.2	20.0	151.5	149.1
$\chi^2_{ m O}$	14.0	13.7	61.8	63.0	11.3	14.8	12.8	13.8	11.2	12.4	14.8	12.1	62.1	62.2
$\chi^2_{ m C}$	13.1	15.2	127.8	124.9	12.7	12.7	16.0	16.9	11.7	15.6	13.7	15.4	122.4	122.5
$\chi^2_{ m Be/B}$	-	42.2	-	82.9	-	42.0	-	43.3	-	42.4	-	40.6	-	83.3
$\chi^2_{ m Li/C}$	-	46.5	-	82.5	-	47.5	-	39.1	-	39.2	-	41.2	-	85.3
$\chi^2_{ m B/C}$	27.8	30.2	78.4	80.5	28.7	29.5	24.1	26.9	24.0	28.1	25.8	33.4	75.8	82.7
γ_1	-	-	-	-	-	-	$2.18\substack{+0.04 \\ -0.51}$	$2.21\substack{+0.04 \\ -0.07}$	$2.08\substack{+0.10 \\ -0.30}$	$2.10\substack{+0.10 \\ -0.06}$	$1.20\substack{+0.42 \\ -0.16}$	$1.64\substack{+0.04 \\ -0.07}$	$1.15\substack{+0.08 \\ -0.12}$	$1.14\substack{+0.24 \\ -0.11}$
γ_2	$2.357\substack{+0.003 \\ -0.005}$	$2.365\substack{+0.005\\-0.002}$	$2.34\substack{+0.01 \\ -0.01}$	$2.360\substack{+0.014\\-0.009}$	$2.353\substack{+0.006\\-0.004}$	$2.361\substack{+0.009\\-0.002}$	$2.368\substack{+0.002\\-0.017}$	$2.371\substack{+0.004\\-0.005}$	$2.360\substack{+0.008\\-0.004}$	$2.378\substack{+0.003 \\ -0.005}$	$2.362\substack{+0.016\\-0.004}$	$2.389\substack{+0.005\\-0.004}$	$2.365\substack{+0.008\\-0.020}$	$2.373\substack{+0.013\\-0.005}$
$R_{inj,0} \; [10^3 \; \mathrm{MV}]$	-	-	-	-	-	-	$8.85\substack{+1.15 \\ -4.33}$	$8.31\substack{+0.91 \\ -1.05}$	$6.20\substack{+1.87 \\ -1.84}$	$6.98\substack{+2.10 \\ -0.33}$	$3.28\substack{+1.82 \\ -0.59}$	$5.18\substack{+0.65 \\ -0.30}$	$2.93\substack{+0.20 \\ -0.37}$	$2.61\substack{+1.01 \\ -0.10}$
8	-	-	-	-	-	-	$0.48\substack{+0.02\\-0.27}$	$0.45\substack{+0.04 \\ -0.06}$	$0.45\substack{+0.03 \\ -0.20}$	$0.487\substack{+0.006\\-0.043}$	$0.490\substack{+0.009\\-0.052}$	$0.493\substack{+0.007\\-0.044}$	$0.39\substack{+0.10 \\ -0.06}$	$0.494\substack{+0.005\\-0.038}$
$D_0 \; [10^{28} \; { m cm}^2/{ m s}]$	$5.05\substack{+0.99\\-1.34}$	$4.24\substack{+0.96 \\ -0.44}$	$4.08\substack{+0.33 \\ -0.55}$	$4.01\substack{+0.32 \\ -0.45}$	$4.62\substack{+1.28 \\ -0.46}$	$4.52\substack{+1.94 \\ -0.39}$	$3.82^{+1.03}_{-0.30}$	$3.73\substack{+0.69 \\ -0.20}$	$3.65\substack{+0.87\\-0.18}$	$3.53\substack{+0.25\\-0.10}$	$4.16\substack{+0.33 \\ -0.88}$	$4.34\substack{+0.14 \\ -0.66}$	$3.24\substack{+0.94 \\ -0.36}$	$3.60\substack{+0.19 \\ -0.33}$
δ_l	$-0.98\substack{+0.22\\-0.01}$	$-0.997\substack{+0.111\\-0.001}$	$-0.98\substack{+0.03\\-0.02}$	$-0.97\substack{+0.03\\-0.02}$	$-0.91\substack{+0.11\\-0.07}$	$-0.91\substack{+0.08\\-0.09}$	$-0.57\substack{+0.22\\-0.37}$	$-0.70\substack{+0.09\\-0.28}$	$-0.88\substack{+0.36\\-0.06}$	$-0.91\substack{+0.13\\-0.04}$	-	-	-	-
δ	$0.49\substack{+0.03 \\ -0.04}$	$0.499\substack{+0.002\\-0.033}$	$0.48\substack{+0.03\\-0.01}$	$0.47\substack{+0.02\\-0.01}$	$0.498\substack{+0.007\\-0.045}$	$0.496\substack{+0.004\\-0.056}$	$0.47\substack{+0.02\\-0.03}$	$0.48\substack{+0.01 \\ -0.03}$	$0.47\substack{+0.02\\-0.03}$	$0.471\substack{+0.009\\-0.014}$	$0.45\substack{+0.02\\-0.02}$	$0.414\substack{+0.013\\-0.005}$	$0.47\substack{+0.02 \\ -0.04}$	$0.43\substack{+0.02\\-0.01}$
δ_h	$0.315\substack{+0.045\\-0.008}$	$0.340\substack{+0.007\\-0.033}$	$0.32\substack{+0.03\\-0.02}$	$0.293\substack{+0.032\\-0.009}$	$0.33\substack{+0.02\\-0.02}$	$0.331\substack{+0.008\\-0.027}$	$0.31\substack{+0.03 \\ -0.02}$	$0.33\substack{+0.02\\-0.03}$	$0.31\substack{+0.03 \\ -0.01}$	$0.31\substack{+0.01 \\ -0.01}$	$0.30\substack{+0.04 \\ -0.02}$	$0.271\substack{+0.026\\-0.007}$	$0.31\substack{+0.02 \\ -0.03}$	$0.311\substack{+0.007\\-0.044}$
$R_{D,0} \ [10^3 \text{ MV}]$	$3.94\substack{+0.52\\-0.35}$	$4.05\substack{+0.43 \\ -0.14}$	$3.87\substack{+0.14 \\ -0.12}$	$3.85\substack{+0.16 \\ -0.05}$	$3.97\substack{+0.21 \\ -0.36}$	$4.25\substack{+0.10 \\ -0.35}$	$4.07\substack{+0.20 \\ -0.53}$	$4.01\substack{+0.14 \\ -0.37}$	$3.02\substack{+0.81\-0.23}$	$3.37\substack{+0.43 \\ -0.41}$	-	-	-	-
$R_{D,1} \ [10^5 \text{ MV}]$	$1.80\substack{+0.13 \\ -0.30}$	$1.52\substack{+0.48\\-0.08}$	$2.00\substack{+0.25 \\ -0.22}$	$2.09\substack{+0.14 \\ -0.42}$	$1.88\substack{+0.12\\-0.35}$	$1.63\substack{+0.19 \\ -0.07}$	$1.65\substack{+0.35 \\ -0.13}$	$1.49\substack{+0.36 \\ -0.06}$	$2.02\substack{+0.09 \\ -0.46}$	$1.68\substack{+0.12\\-0.08}$	$2.14\substack{+0.16 \\ -0.40}$	$2.33\substack{+0.16 \\ -0.46}$	$1.96\substack{+0.62\\-0.11}$	$2.12\substack{+0.25 \\ -0.29}$
$s_{D,0}$	$0.38\substack{+0.06\\-0.11}$	$0.32\substack{+0.06\\-0.07}$	$0.15\substack{+0.03 \\ -0.02}$	$0.16\substack{+0.03 \\ -0.01}$	$0.36\substack{+0.06 \\ -0.07}$	$0.31\substack{+0.13 \\ -0.05}$	$0.12\substack{+0.19 \\ -0.02}$	$0.13\substack{+0.06 \\ -0.02}$	$0.13\substack{+0.20 \\ -0.02}$	$0.109\substack{+0.033\\-0.004}$	-	-	-	-
$v_{0,c} \; \mathrm{[km/s]}$	$3.34\substack{+21.76\-2.49}$	$1.81\substack{+17.74 \\ -0.70}$	$9.09\substack{+7.89 \\ -8.68}$	$12.11\substack{+5.83 \\ -6.91}$	$0.27\substack{+23.83 \\ -0.06}$	$0.84\substack{+27.41\\-0.22}$	$13.18^{+14.33}_{-12.26}$	$4.92\substack{+10.66\\-4.85}$	$5.02^{+18.32}_{-2.27}$	$2.30\substack{+6.45 \\ -1.31}$	$0.34\substack{+3.88\\-0.23}$	$0.004\substack{+1.515\\-0.000}$	$0.89\substack{+5.05 \\ -0.75}$	$1.81\substack{+2.30 \\ -1.63}$
$v_A \; \mathrm{[km/s]}$	-	-	-	-	$8.65^{+3.51}_{-7.81}$	$0.54\substack{+6.04 \\ -0.24}$	-	-	$10.68\substack{+2.94\\-9.29}$	$10.85\substack{+3.55\\-4.79}$	$19.23\substack{+3.65\\-3.77}$	$24.04\substack{+0.91 \\ -2.90}$	$16.24\substack{+5.30 \\ -1.35}$	$20.14\substack{+1.44 \\ -1.49}$
Iso.Ab. C $[10^3]$	$3.59\substack{+0.08\\-0.02}$	$3.59\substack{+0.04\\-0.02}$	$3.48\substack{+0.03\\-0.14}$	$3.37\substack{+0.11 \\ -0.06}$	$3.63\substack{+0.02\\-0.04}$	$3.60\substack{+0.03\\-0.02}$	$3.58\substack{+0.05\\-0.03}$	$3.59\substack{+0.03 \\ -0.04}$	$3.640\substack{+0.009\\-0.068}$	$3.57\substack{+0.03\\-0.02}$	$3.58\substack{+0.06\\-0.04}$	$3.54\substack{+0.05\\-0.01}$	$3.47\substack{+0.08 \\ -0.12}$	$3.36\substack{+0.16\\-0.02}$
Iso.Ab. N	$325.38^{+17.75}_{-6.27}$	$306.87^{+17.12}_{-7.38}$	$276.35\substack{+44.56 \\ -20.91}$	$280.12\substack{+23.61\\-35.03}$	$348.86^{+7.40}_{-25.27}$	$323.27\substack{+9.25\\-17.15}$	$333.27^{+23.85}_{-21.66}$	$307.74^{+18.80}_{-8.56}$	$327.91^{+14.14}_{-8.92}$	$313.82^{+8.68}_{-16.42}$	$337.18\substack{+26.21\\-38.86}$	$300.77^{+14.11}_{-14.55}$	$308.24\substack{+16.04 \\ -49.55}$	$228.85\substack{+61.43\\-7.77}$
Iso.Ab. O $[10^3]$	$4.35\substack{+0.18 \\ -0.02}$	$4.41\substack{+0.05 \\ -0.04}$	$4.40\substack{+0.05 \\ -0.10}$	$4.40\substack{+0.05 \\ -0.08}$	$4.41\substack{+0.05 \\ -0.05}$	$4.41\substack{+0.03 \\ -0.09}$	$4.38\substack{+0.05 \\ -0.04}$	$4.37\substack{+0.04 \\ -0.07}$	$4.42\substack{+0.03 \\ -0.09}$	$4.34\substack{+0.07 \\ -0.01}$	$4.313\substack{+0.181 \\ -0.004}$	$4.34\substack{+0.11 \\ -0.02}$	$4.32\substack{+0.23\\-0.01}$	$4.41\substack{+0.12 \\ -0.05}$
$\delta_{\rm XS} \to {\rm C}$	$-0.08\substack{+0.23\\-0.08}$	$0.03\substack{+0.14 \\ -0.13}$	$0.17\substack{+0.09\\-0.13}$	$0.13\substack{+0.14 \\ -0.07}$	$-0.05\substack{+0.08\\-0.05}$	$-0.12\substack{+0.18\\-0.06}$	$0.17\substack{+0.06 \\ -0.21}$	$0.11\substack{+0.12 \\ -0.07}$	$0.23\substack{+0.03 \\ -0.24}$	$0.15\substack{+0.05 \\ -0.07}$	$0.28\substack{+0.02\\-0.09}$	$0.25\substack{+0.04 \\ -0.03}$	$0.26\substack{+0.03 \\ -0.06}$	$0.22\substack{+0.08\\-0.09}$
$\delta_{\rm XS} \rightarrow {\rm N}$	$-0.08\substack{+0.07\\-0.03}$	$-0.06\substack{+0.04\\-0.04}$	$0.15\substack{+0.02\\-0.04}$	$0.12\substack{+0.03 \\ -0.02}$	$-0.10\substack{+0.06\\-0.01}$	$-0.06\substack{+0.03\\-0.05}$	$0.02\substack{+0.06\\-0.06}$	$0.01\substack{+0.02\\-0.02}$	$0.05\substack{+0.02 \\ -0.07}$	$0.050\substack{+0.009\\-0.032}$	$0.10\substack{+0.02\\-0.04}$	$0.110\substack{+0.005\\-0.034}$	$0.189\substack{+0.008\\-0.037}$	$0.189\substack{+0.004\\-0.045}$
$\delta_{\rm XS} \rightarrow {\rm Li}$	-	$0.00\substack{+0.05 \\ -0.03}$	-	$0.16\substack{+0.03 \\ -0.03}$	-	$-0.02\substack{+0.05\\-0.06}$	-	$0.14\substack{+0.03\\-0.02}$	-	$0.16\substack{+0.01 \\ -0.02}$	-	$0.193\substack{+0.007\\-0.005}$	-	$0.190\substack{+0.005\\-0.014}$
$\delta_{\rm XS} ightarrow { m Be}$	-	$0.07\substack{+0.05 \\ -0.04}$	-	$0.186\substack{+0.010\\-0.044}$	-	$0.07\substack{+0.04 \\ -0.05}$	-	$0.22\substack{+0.02\\-0.04}$	-	$0.23\substack{+0.02 \\ -0.02}$	-	$0.280\substack{+0.008\\-0.012}$	-	$0.27\substack{+0.01\\-0.03}$
$\delta_{\rm XS} ightarrow { m B}$	$-0.065\substack{+0.084\\-0.008}$	$-0.06\substack{+0.03\\-0.02}$	$0.07\substack{+0.02\\-0.03}$	$0.066\substack{+0.009\\-0.025}$	$-0.05\substack{+0.03\\-0.02}$	$-0.07\substack{+0.03\\-0.03}$	$0.05\substack{+0.05 \\ -0.05}$	$0.04\substack{+0.01 \\ -0.02}$	$0.09\substack{+0.01 \\ -0.07}$	$0.05\substack{+0.02 \\ -0.01}$	$0.16\substack{+0.03 \\ -0.04}$	$0.117\substack{+0.005\\-0.014}$	$0.12\substack{+0.03 \\ -0.02}$	$0.12\substack{+0.02\\-0.02}$
$A_{\rm XS} \to {\rm C}$	$0.55\substack{+0.04 \\ -0.04}$	$0.57\substack{+0.03\\-0.06}$	$0.63\substack{+0.37 \\ -0.07}$	$0.81\substack{+0.11 \\ -0.27}$	$0.54\substack{+0.05 \\ -0.03}$	$0.54\substack{+0.05 \\ -0.04}$	$0.51\substack{+0.15 \\ -0.01}$	$0.53\substack{+0.05 \\ -0.02}$	$0.511\substack{+0.074\\-0.006}$	$0.514\substack{+0.031\\-0.006}$	$0.54\substack{+0.04 \\ -0.04}$	$0.52\substack{+0.03 \\ -0.02}$	$0.500\substack{+0.334\\-0.000}$	$0.83\substack{+0.06\\-0.28}$
$A_{\rm XS} \rightarrow {\rm N}$	$1.18\substack{+0.04\\-0.16}$	$1.11\substack{+0.04 \\ -0.04}$	$1.18\substack{+0.10 \\ -0.13}$	$1.15\substack{+0.10 \\ -0.09}$	$1.09\substack{+0.07 \\ -0.03}$	$1.13\substack{+0.06 \\ -0.04}$	$1.07\substack{+0.13 \\ -0.03}$	$1.15\substack{+0.04 \\ -0.04}$	$1.14\substack{+0.06 \\ -0.04}$	$1.13\substack{+0.04 \\ -0.03}$	$1.19\substack{+0.03 \\ -0.17}$	$1.20\substack{+0.01 \\ -0.13}$	$1.02\substack{+0.17 \\ -0.05}$	$1.15\substack{+0.04\\-0.15}$
$A_{\rm XS} \rightarrow {\rm Li}$	-	$1.27\substack{+0.07 \\ -0.04}$	-	$1.22\substack{+0.07 \\ -0.06}$	-	$1.32\substack{+0.10\\-0.05}$	-	$1.33\substack{+0.06 \\ -0.04}$	-	$1.31\substack{+0.04 \\ -0.05}$	-	$1.36\substack{+0.02\\-0.15}$	-	$1.14\substack{+0.04 \\ -0.07}$
$A_{\rm XS} \to {\rm Be}$	-	$0.990\substack{+0.006\\-0.004}$	-	$0.946\substack{+0.004\\-0.003}$	-	$0.992\substack{+0.005\\-0.003}$	-	$0.990\substack{+0.005\\-0.002}$	-	$0.991\substack{+0.002\\-0.003}$	-	$0.992\substack{+0.001\\-0.005}$	-	$0.941\substack{+0.007\\-0.009}$
$A_{\rm XS} \to {\rm B}$	$1.11\substack{+0.04 \\ -0.13}$	$1.03\substack{+0.04 \\ -0.03}$	$1.05\substack{+0.09 \\ -0.08}$	$1.01\substack{+0.05 \\ -0.05}$	$1.08\substack{+0.05 \\ -0.04}$	$1.06\substack{+0.07 \\ -0.03}$	$1.04\substack{+0.11 \\ -0.02}$	$1.06\substack{+0.04 \\ -0.03}$	$1.08\substack{+0.05 \\ -0.03}$	$1.05\substack{+0.03 \\ -0.03}$	$1.16\substack{+0.01 \\ -0.17}$	$1.08\substack{+0.01 \\ -0.10}$	$0.95\substack{+0.11 \\ -0.06}$	$0.95\substack{+0.02\\-0.05}$
$arphi_{ m AMS-02}$	$613.67\substack{+44.11 \\ -13.66}$	$615.56\substack{+34.46\\-16.99}$	$678.15\substack{+16.99\\-21.33}$	$697.68\substack{+2.03\\-21.99}$	$608.98\substack{+34.11\\-7.58}$	$614.39\substack{+24.90\\-17.40}$	$594.81\substack{+31.64 \\ -11.66}$	$614.82\substack{+12.74\\-40.06}$	$618.80\substack{+15.41\\-25.78}$	$593.84\substack{+13.47 \\ -8.50}$	$590.95\substack{+56.33\\-13.03}$	$600.02\substack{+12.65\\-23.88}$	$655.17\substack{+17.48\\-45.23}$	$658.61\substack{+27.11\\-36.18}$

value and 1 σ error for each parameter.

Stockholm University and OKC

TABLE IV. Fit results. For all 14 fits we report the total χ^2 , the contribution to the χ^2 form each single species, the number of degrees of freedom, and the best-fit

