Measurements of **associated top quark** production and searches for **new top-quark phenomena** with the ATLAS detector

> Brendon Bullard on behalf of the ATLAS Collaboration

> > TeV Particle Astrophysics 2021 Particle Physics Session October 29, 2021

Overview of Top Quark Measuremer

- Top is most massive SM particle
 - Large coupling to Higgs boson
 - Can couple strongly to new physics
 - Interpreted in the SM EFT paradigm
- Run II ATLAS dataset of 139 fb⁻¹ maximal sensitivity to rare processes
 - Testing forbidden SM phenomena with $t\bar{t}$ production
 - Measure rare SM $t\bar{t} + X$ processes inclusively and differentially
- Present latest results from ATLAS

Overview of Top Quark Measurements

- Top quark signatures rely on many reconstructed objects
 - ► Jets (p_T resolution, scale)
 - Heavy flavor tagging (efficiency)
 - Muons, electrons (trigger, isolation)
 - Missing energy (from ν in t_{lep})
- Similar systematic uncertainties
 - Luminosity, object reconstruction
 - Theory uncertainties of fixed order calculation (μ_R/μ_F variations)
 - Showering/hadronization modeling (varying MC algorithm)

Brendon Bullard

Event display for dileptonic $t\bar{t}$ candidate recorded by ATLAS

Tests of SM with Top Quarks

Motivation and Event Selection

- FCNC forbidden at tree level and suppressed at loop level in SM
 - Top decays via FCNC ~10⁻¹⁴, can be 10⁻⁷
 10⁻⁴ in BSM (SUSY, 2HDM)
 - Interpret rates of FCNC top decays in an EFT extension of SM:

$$\mathscr{L}_{eff} = \mathscr{L}_{SM} + \frac{1}{\Lambda_{NP}^2} \sum_{k} C_k \mathcal{O}_k$$

- Search for $t \to Zq$ (q = u, c), sensitive to tZu and tZc couplings through C_{qB} , C_{qW}
- Improvement on previous ATLAS measurement using only 36 fb⁻¹
- Include single-top FCNC production
- Use MVA to better isolate FCNC signal

 t_{SM} Car reconstr χ^2 minin M_t and Λ

 $m_T(l_W, \nu)$ non-pro

Remo favo t_{FCNC} 0

Brendon Bullard

TeV Particle Astrophysics 2021 - Particle Physics Session

Search for FCNC in top events with ATLAS

ATLAS-CONF-2021-049

- Require exactly 3 leptons (cleaner than hadronic channel)
- Exactly 1 b-tagged jet (DL1r MVA tagger @ 70% eff OP)
- Missing energy from escaping neutrino
- Define two (2) signal regions (SR1, SR2) targeting $t\overline{t}$ and tZ

andidatas				
tructed using		Common selections Exactly 3 leptons with $p_T(\ell_1) > 27 \text{ GeV}$ $\geq 1 \text{ OSSF pair, with } m_{\ell\ell} - m_Z < 15 \text{ GeV}$		
mization with Mw constraint	Exactly $\geq 1 \text{ OSS}$			
	SR1	SR2		
ompt leptons	≥ 2 jets	1 jet	2 jets	
	1 <i>b</i> -jet	1 <i>b</i> -jet	1 <i>b</i> -jet	
ve overlap,	_	$m_{\rm T}(\ell_W, \nu) > 40 { m GeV}$	$m_{\mathrm{T}}(\ell_W, \nu) > 40$	
r SR1 for candidates	$ m_{j_a\ell\ell}^{\rm reco} - m_t < 2\sigma_{t_{\rm FCNC}}$	—	$ m_{j_a\ell\ell}^{\rm reco} - m_t > 2$	
		$ m_{j_b\ell_W\nu}^{\rm reco} - m_t < 2\sigma_{t_{\rm SM}}$	$ m_{j_b \ell_W \nu}^{\rm reco} - m_t <$	

Background Estimation

- Backgrounds from prompt lepton production are dominant
 - SR1: VV+HF and $t\bar{t}Z$ (65% total bkg)
 - SR2: VV+HF and tZ (70% total bkg)
- Non-prompt leptons from VV and associated top production are small
- Define four control regions (CR)
 - $t\bar{t}$ CR selecting OSOF leptons
 - ttZ CR selecting 2 b-je
 - CR1(2) defined by SR1(2) of $t_{FCNC(SM)}$; cut on $m_T(l)$ suppress non-prompt k

Brendon Bullard

Statistical Analysis

- Purity SR1 and SR2 using MVA (GBDT) trained on well-separating observables
 - ► SR1: *D*¹ built for FCNC *tZu* and *tZc*
 - SR2: D_2^u built for tZu single-top FCNC, D_2^c built for *tZc* inclusively
 - Use m(t_{reco}), dR(tt), N_{jets}, χ^2 , ...
- Set CL_s limits in different fits for each LH/ RH *tZu* and *tZc* coupling
 - Largest uncertainty is $t\bar{t}$ cross section
- Limits obtained on FCNC branching fractions and EFT coefficients:
- $B(t \rightarrow Zu) < 6.2 \times 10^{-5}$
- $B(t \rightarrow Zc) < 13 \times 10^{-5}$

Brendon Bullard

Õ

Even

80

60

40

20

1.25

0.75

Data / Bkg

0.75

0.5

Post-fit results for FCNC tZu LH coupling limits

SR1 enriched in FCNC $t\bar{t}$

ttZ Control Region

Motivation and Strategy

- Axiom of SM is universal couplings to charged leptons universally in flavors
 - LEP measured $R(\tau/\mu) = 1.070 \pm 0.026$, expected to be very close to unity (2.7σ)
 - Results by LHCb and others show tension with lepton flavor universality R(D^(*))
- Exploit large number of $t\bar{t}$ events seen by ATLAS, large sample of $W \rightarrow \mu \nu_{\mu} / \tau \nu_{\tau}$
 - Measure rates of $W \to \mu \nu_{\mu'} W \to \tau (\mu \nu_{\mu} \nu_{\tau}) \nu_{\tau}$
 - Relies on differences in reconstructed muon impact parameter d_0 and p_T
- Select dileptonic $t\bar{t}$ events, with at least one decay in muon channel

Brendon Bullard

Test of LFU in top events with ATLAS

Beamspot

 10^{5}

 10^{3}

10

Background Estimation

- Dedicated control regions constrain large normalization of backgrounds
 - $Z \rightarrow \mu \mu + jets$ CR, includes Z mass window (small values of $|d_0|$)
 - Non-prompt probe muon from b- and $c_{\frac{1}{2}}$ 1.05 hadron decay from semi-leptonic $t\bar{t}$, select SS leptons (large values of $|d_0|$)

- Modeling of $Z(\mu\mu)$ +jets background affects µµ SR only
- Other SM backgrounds are prompt, high p_T, normalization taken from MC

Brendon Bullard

Extraction of $R(\tau/\mu)$

- Systematics dominated by:
 - Calibration of high- $|d_0|$ region of prompt- μ ten (application of $Z(\mu\mu)$ calibrations to $t\bar{t}$)
 - Uncertainties due to parton showering (affecting
 - Muon instrumental uncertainties
 - Limited statistics of μ_{had} CR and MC $t\bar{t}$ generato

Brendon Bullard

Test of LFU in top events with ATLAS

	Source	Impact on $R(\tau/\mu)$
	Prompt d_0^{μ} templates	0.0038
nplates	μ_{prompt} and $\mu_{\tau(\rightarrow\mu)}$ parton shower variations	0.0036
	Muon isolation efficiency	0.0033
	Muon identification and reconstruction	0.0030
	μ_{had} normalisation	0.0028
g N _{jets})	$t\bar{t}$ scale and matching variations	0.0027
	Top $p_{\rm T}$ spectum variation	0.0026
	μ_{had} parton shower variations	0.0021
	Monte Carlo statistics	0.0018
	Pile-up	0.0017
r	$\mu_{\tau(\rightarrow\mu)}$ and $\mu_{had} d_0^{\mu}$ shape	0.0017
	Other detector systematic uncertainties	0.0016
	Z+jet normalisation	0.0009
	Other sources	0.0004
	$B(\tau \to \mu \nu_{\tau} \nu_{\mu})$	0.0023
	Total systematic uncertainty	0.0109
	Data statistics	0.0072
	Total	0.013

Measurements of Associated Top Production

Motivation and Strategy

- SM *tītī* production is sensitive to many BSM effects and 4-fermion EFT operator
 - 2HDM H/A, gluinos, top-philic BSM fields
- Cross section at 13 TeV is 11.97 fb at NLO in QCD and QED (1711.02116)
- Split into separate analysis channels
 - 2ISS/3I: 12% of *tītī*, cleaner channel
 (2007.14858), observed 4.3 σ significance
 - 2OS/1I: 56% of tītī, dominated by tībb background (highlighted in this talk)
- Events with many jets, b-jets, large-R jets, pseudo-continuous b-tagging

Brendon Bullard

TeV Particle Astrophysics 2021 - Particle Physics Session

Measurement of *t*ttt with ATLAS

2106.11683

Sequential Reweighting

- Modeling in high N_{jets} relies heavily on PS but is not reliable - needs correction
- $t\bar{t}$ +jets rescaled by flavor in dedicated fit
 - $t\bar{t}$ +light/c/b rescaled by 0.99, 1.58, 1.33
- Correct modeling of $t\bar{t}$ +jets N_{jets} in 1L/ 2LOS SRs using 2 b-jet region
 - Reweight in (N_{jets} , $N_{LR-jets}$), H_{T} , and ΔR_{avg}^{JJ}
- Reweighting procedure **significantly** improves modeling at high multiplicities

Measurement of *tttt* with ATLAS

2106.11683

Fit and Results

- Train BDTs in each SR, most powerful variables are H_T and sum of pseudo-continuous b-tagging scores of leading 6 jets
- PL fit is performed in BDT score and H_T
- Dominant systematics due to modeling
 - Parton shower evaluated using alternate algorithm
 - Modeling of large $t\bar{t}b\bar{b}$ background (5FS/4FS)
- 1L/2LOS measurement combined with earlier multi-lepton channels, 4.7σ observed significance
 - Cross section measured 24^{+7}_{-6} fb within 2 standard deviations of SM prediction 12.0 ± 2.4 fb

Brendon Bullard

Measurement of *t*ttt with ATLAS

2106.11683

Motivation and Selections

- Measurements of $t\bar{t}Z$ sensitive to tZ EW coupling
 - Differential measurement useful for theoretical predictions from MC generators
- Inclusive cross section performed at parton level
- Differential cross sections at parton/particle level
 - No kinematic selections applied at parton level
 - Similar selections at particle level to detector level
- $t\bar{t}Z$ modeled at NLO+NNLL in QCD with EW corrections, normalized to full off-shell cross section

Measurement of $t\bar{t}Z$ with ATLAS

Eur. Phys. J. C (2021) 81:737

Split into two regions based on the $t\bar{t}$ decay **Trilepton**: semi-leptonic **Tetralepton**: dileptonic

- Split Inclusive regions to isolate WZ background (few b-jets expected)
- Single differential region to **boost statistics**

letralepto	on Region
(Inclusive and	d Different
ee+μμ,	ee+µ
=1b @ 85%	≥2b @ 8
eμ+μe,	eμ+μ
=1b @ 85%	≥2b @ 8

Split channels based on the flavor of the non-Z candidate lepton pair to isolate ZZ background

15

Background Estimation

- Control regions for WZ (b-jet veto) and ZZ + jets (require 2 OSOF lepton pairs)
- Largest uncertainties are *ttZ* parton shower, *tWZ* modeling, and b-tagging
- Check compatibility through fits with either or both of 31 and 41 regions
- Good agreement with NLO+NNLL prediction:
 - $\sigma_{t\bar{t}Z} = 0.99 \pm 0.05$ (stat) ± 0.08 (syst) pb
 - $\sigma_{t\bar{t}7}^{NLO+NNLL} = 0.86 \pm \frac{+0.07}{-0.08}$ (scale) ± 0.02 (PDF) (2001.03031)

Channel	$\mu_{t\bar{t}Z}$
Trilepton	$1.17 \pm 0.07 \text{ (stat.)} ^{+0.12}_{-0.11} \text{ (syst.)}$
Tetralepton	1.21 ± 0.15 (stat.) $^{+0.11}_{-0.10}$ (syst.)
Combination $(3\ell + 4\ell)$	$1.19 \pm 0.06 (\text{stat.}) \pm 0.10 (\text{syst.})$

Brendon Bullard

Measurement of *ttZ* with ATLAS

Eur. Phys. J. C (2021) 81:737

Unfolded Observables

- Differential results statistical uncertai modeling and b-t
- Observables sens spin correlations, modeling

• Generally good agreement between unfolded distributions and MC/theory predictions

Measurement of $t\bar{t}Z$ with ATLAS

Eur. Phys. J. C (2021) 81:737

Motivation and Strategy

- Production of $t\bar{t}\gamma$ sensitive to $t\gamma$ -coupling
 - Differential cross sections sensitive to BSM effects via anomalous top quark dipole moment
- Full fixed-order calculation with non-resonant diagrams and interference
 - Measure jointly $t\bar{t}\gamma$ and non-resonant $tW\gamma$
- Select events in eµ channel with hard photon, fit to S_T = sum of all transverse momenta
- Measured and theoretical fiducial cross section:

•
$$\sigma^{fid}(t\bar{t}\gamma \to e\mu) = 39.6 \pm 0.8 \text{ (stat)} ^{+2.6}_{-2.2} \text{ (syst) fb}$$

• $\sigma_{NLO}^{fid} = 38.50 \pm {}^{+0.56}_{-2.18}$ (scale) ${}^{+1.04}_{-1.18}$ (PDF) fb (1803.09916, 1809.08562)

Brendon Bullard

Measurement of $t\bar{t}\gamma$ and $tW\gamma$ with ATLAS

Unfolded Observables

- Unfolded to parton level, compare to fixe order NLO theory and LO+PS MC simulat
 - Photon p_T and rapidity; angular separation c leptons and between photon and nearest le
- Theory in good agreement with data, mos good agreement with MC
- LO+PS MC simulation unable to fully desc. angular observables $\Delta \phi(ll)$, $\Delta R(\gamma l)_{min}$
- Largest systematic uncertainties from signa and background modeling, fully reliant on

Brendon Bullard

9

Summary

- Presented latest results from ATLAS Experiment on precision tests of Standard Model • Search for FCNC provide most stringent limits to date on $t \rightarrow Zq$ FCNC decays

 - Measurement of $R(\tau/\mu)$ exceed precision of LEP and **resolves tension in** $R(\tau/\mu)$ measurement with SM
- Presented latest measurements of associated top production measured by ATLAS
 - Measurement of $t\bar{t}t\bar{t}$ in 1L/OS channels; combined with multi-lepton channels, observe 4.7 σ significance
 - First measurement of ttZ differential cross section at using full LHC Run II dataset in observables sensitive to BSM physics affecting tZ coupling
 - Perform differential cross section measurement of $t\bar{t}\gamma + tW\gamma$; compare with first ever full calculation of $t\bar{t}$ in association with a hard photon including non-resonant/off-shell effects at NLO QCD

Brendon Bullard

Thank you for your attention!

Backup -