

Contributions from the fixed target program of the LHCb experiment to the understanding of antimatter in cosmic rays: status and prospects

Chiara Lucarelli

Università e INFN, Firenze On behalf of the LHCb collaboration

TeVPA 2021, Chengdu, China, 29 October 2021

Prelude

Astroparticle physics has reached a new high-precision era.

<u>BUT</u>

The interpretation of some measurements is still limited by the understanding of the CRs interactions during their propagation (i.e. uncertainties on the hadronic production cross-sections (XS)).

<u>i.e.</u>

In 2015 AMS-02 observed a hint for an **excess of high-energy antiprotons (\overline{p})** wrt to the expected production in CRs-Interstellar Medium (ISM, mainly H and He) collisions.

→ It could be an hint of Dark Matter annihilation or decay process.

<u>BUT</u>

→ The interpretation is limited by poor knowledge of hadronic production XS.

Accelerator experiments can complement the CRs investigations

The LHCb experiment

The LHCb detector is a single-arm forward spectrometer originally optimized for heavy flavour physics.

- Forward geometry: optimized for $b\overline{b}$ production, $2 < \eta < 5, \Theta \in [10, 250]$ mrad.
- **Tracking:** excellent vertexing, IP resolution and momentum resolution, $\Delta p/p = 0.5\% 1.0\%$.
 - **Particle Identification (PID):** excellent separation among K, π and p with momentum in [10, 110] GeV/c range.
- **Trigger:** flexible and versatile, bandwith up to 15 kHz to disk.

Its capabilities extend beyond the original expectations:

- \rightarrow Currently it is a general purpose experiment in the forward direction.
- → Its forward geometry is very well suited for **<u>fixed-target physics.</u>**

LHCb fixed-target configuration: SMOG

The System for Measuring Overlap with Gas (**SMOG**) can inject small amount of gas in LHC beam pipe around (±20 m) the LHCb IP.

Originally it was conceived for precise luminosity measurements through **Beam-Gas Imaging**.

For machine safety, **only noble gases** with a maximum pressure of **2x10⁻⁷ mbar** (x100 nominal LHC vacuum) can be injected \rightarrow Luminosity: $\mathcal{L} \sim \mathcal{O}(10^{29} \ cm^{-2} s^{-1})$.

In 2015-2018, LHCb collected physics samples in fixed-target configuration with different targets and different centre of mass energies.

SMOG physics opportunities

SMOG opens the possibility to access physics opportunities unique at the LHC:

- Collisions with targets of mass number A intermediate between p and Pb.
- Energy range $\sqrt{s_{NN}} \in [30, 115]$ GeV for beam energy in [0.45, 7] TeV (unexplored gap between SpS and LHC/RHIC).
 - → pHe collisions reproduce CRs interactions in the ISM, important to understand the secondary production of antimatter.
 - $\rightarrow pNe$ collisions can provide useful inputs to the **modelling of** the Ultra High Energy (**UHE**) atmospheric showers.

- Access to large target
 Bjorken-x values at low Q²
 (PDF is poorly constrained)
 - → Study nuclear PDFs at large x; charm PDF important to understand background to neutrino astronomy from UHE atmospheric showers.

Charm production measurements for CRs

In neutrino astronomy, the **main background** to the high-energy neutrino flux comes from neutrinos produced in **decays of charmed hadrons** in UHE atmospheric showers.

The background prediction is based on charm production measurement at LHCb in *pp* collisions, that are not sensitive to high-x PDF (possible intrinsic charm contribution).

Fixed-target and/or high Q² pp measurements are needed.

Charm production in fixed-target data

PRL 122 (2019) 132002

First charm production studies at LHC fixed-target:

- 86 GeV *pHe* (7.6 \pm 0.5 nb^{-1}) and 110 GeV *pAr* (few nb^{-1}).
- With the luminosity measurement for pHe sample, • the first cc XS at 100 GeV is obtained, an D_0 unexplored energy scale.

pAr

Rapidity distributions at y*<0 • (high x) consistent with prediction with no nucleon intrinsic charm effects, but limited by high statistic uncertainty.

Charm production in pp at high Q^2

arXiv:2109.08084

Hint of intrinsic charm from $pp \rightarrow Z + Charm$ measurement in the forward region:

- Zc production is at high Q² → Small hadronic uncertainties, sensitive to high-x charm PDF.
- pp at $\sqrt{s} = 13 \ TeV$ for an integrated luminosity of $6 \ fb^{-1}$.
- The fraction of Z+c-jet events is measured (less affected by systematics): $\mathcal{R}_{j}^{c} = \sigma(Zc)/\sigma(Zj)$. \mathcal{R}_{j}^{c}

2.5

The observed \mathcal{R}_{j}^{c} spectrum exhibits a sizable **enhancement** in the forward-most Z rapidity bin, **in comparison to NLO SM calculations** \rightarrow Hint of possible intrinsic charm contribution to proton PDF.

3

3.5

4.5

y(Z)

4

Antiproton production measurement (1)

PRL 121 (2018) 222001

First measurement of $\sigma(pHe \rightarrow \overline{p}_{prompt}X)$ at $\sqrt{s_{NN}} = 110 \ GeV$:

• \bar{p} reconstructed in the kinematic region $p \in [12,110] \text{ GeV}/c, p_t \in [0.4,4] \text{ GeV}/c$ to optimize reconstruction and particle identification efficiencies.

- Only p
 p promptly produced considered; detached component reduced cutting on the impact parameter wrt the primary vertex.
- \bar{p} number from a simultaneous fit to the PID variables in (p, p_t) bins.
- Luminosity from *pe* elastic scattering with gas atomic electrons (SMOG is not equipped with precise gauges for the gas pressure).

→ Dominant contribution to systematic uncertainty on σ !

Antiproton production measurement (2)

- Result on XS is compared to different MC ۲ event generator.
- Experimental uncertainties (<10%) are lower than the spread among theoretical models.

Important contribution to the improvement of the secondary \overline{p} flux prediction:

- Validation of the extrapolation of the XS from pp to pHe.
- Validate models for the XS energy evolution (violation of Feynman scaling above 10^{1} (a) 50 GeV).

10

Extensions of the Run2 programme (1)

Analysis on Run2 data samples is ongoing:

• Around 20-30% of \bar{p} production comes from anti-hyperon decays:

 \rightarrow Analysis for secondary-to-primary \bar{p} ratio $\mathbf{R} = \sigma_{sec} / \sigma_{prim}$ is ongoing:

- Exploiting the IP separation between prompt and detached \bar{p} , **inclusive measurement** of the non prompt \bar{p} yield from all anti-hyperons.
- Measure $\overline{\Lambda} \to \overline{p}\pi^+$ exclusive production, exploiting LHCb excellent mass resolution.

Chiara Lucarelli, 29/10/2021, TeVPA 2021

Extensions of the Run2 programme (2)

The secondary flux predictions of light anti-nuclei (i.e. antideuteron, \bar{d}) in CRs is limited by the absence of direct measurements of production in:

- The interesting energy range $(p_{lab} \in [10, 10^4] \text{ GeV}/c)$
- The same experimental conditions as \overline{p} .

→ Searching \bar{d} in the $pHe(\sqrt{s_{NN}} = 110 \text{ GeV})$ sample.

- The RICHs can in principle identify \bar{d} above 35 GeV/c.
 - From study performed for pp collisions, expected one \overline{d} per 10⁴ π , at the limit of LHCb PID capabilities; it can be **improved with machine learning techniques** (<u>arXiv:2110.10259</u>).
- The TOF between the Velo and the OT can in principle identify \bar{d} in [2, 10] GeV/c range.
 - Starting from EPOS-LHC $pHe(\sqrt{s_{NN}} = 110 \text{ GeV})$ simulation, assuming the analytic coalescence model to produce \bar{d} and normalizing to the number of \bar{p} observed in the data, expected ~300 \bar{d} in the TOF kinematic region, before PID.

Limitations of SMOG during Run2

The SMOG gas spread (±20 m) is a limiting factor:

- Only noble gases at low pressure can be injected to keep the beamline contamination low.
- Limited statistics because of short dedicated data-taking periods (overlap between the SMOG and *pp* luminous regions).
- No direct *L* measurement due to the lack of precise gauges for injected gas P.
- Injection system equipped with only **one gas bottle**.
 - → Direct luminosity measurement would reduce the dominant experimental uncertainty.
 - → Separating the luminous regions facilitates **simultaneous data-taking**.
 - → A gas injection system with more than one gas recipient and controlled gas flux would make possible to more easily change the gas target.

The SMOG2 upgrade

SMOG2: fixed-target LHCb programme upgraded with the installation of a **gas confinement cell upstream the IP** in the [-500, -300] mm region.

- The average gas density (and luminosity) will increase up to two orders of magnitude with the same gas flow as SMOG.
- The **gas pressure** will be **precisely measured** and finely controlled, reducing the uncertainty on luminosity.
- More injectable gases (pending the machine approval), like H₂, D₂, O₂, N₂, Kr, Xe.
- **Simultaneous data-taking** with pp will be possible, exploiting the separation wrt IP.

SMOG2 upgrade status

- The cell is a 20 cm long cylinder of 5 mm of radius around the beam; it is made of two halves connected to the VELO.
- The storage cell has been installed in the LHCb cavern in august 2020 and the alignment and calibration have been accomplished.

TO-DO list \rightarrow on going:

- Install the new gas feed system with pressure sensors (accuracy $\sim 2\%$) and 4 gas lines to guarantee fast switch between gas species.
- Implement the simultaneous pp-SMOG2 data-taking setup within the challenging real-time event reconstruction foreseen for LHCb Run 3.

SMOG2 upgrade performance

To maximize physics output, **simultaneous data-acquisition** for all bunches in LHC beam (same online software reconstruction and selection): **<u>studies ongoing</u>**.

- \rightarrow The gas presence must not disturb the pp core physics programme.
- \rightarrow pgas collisions are largely displaced from the IP and they are challenging to reconstruct.

Simulation studies:

- The **reconstructed vertex** in *pp* and *pgas* collisions are **separated**.
- The tracking efficiencies shows **similar performances** between *pp* and *pgas*.
- The beam partial lifetime largely exceed the typical duration of a fill (lifetime reduction <2%).
- The **gas presence doesn't affect** the *pp* physics program.

(Some) SMOG2 physics opportunities (1)

The increase in statistics (aiming at 100 pb⁻¹), in the injectable gas species and the expected higher accuracy will further widen LHCb-SMOG accessible physics scenario.

 \bar{p} measurement will largely benefit from SMOG programme upgrade:

- Extension towards lower energy to test scaling violation (starting with Run2 pHe at $\sqrt{s_{NN}} = 86 \ GeV$ sample) and access forward region (Feynman-x>0).
- With H_2 injection: $\sigma(pp \rightarrow \overline{p}X)$ and $\sigma(pHe \rightarrow \overline{p}X)/\sigma(pp \rightarrow \overline{p}X)$ to constrain the production cross section.

- With D_2 injection: $\sigma(pD \to \overline{p}X) / \sigma(pp \to \overline{p}X)$ to test for isospin violation and constrain the \overline{n} production.
- Explore the possibility for measurement of light anti-nuclei production.

(Some) SMOG2 physics opportunities (2)

The increase in statistics (aiming at 100 pb⁻¹), in the injectable gas species and the expected higher accuracy will further widen LHCb-SMOG accessible physics scenario.

	SMOG	SMOG	SMOG2
	published result	largest sample	example
LHCb-PUB-2018-015	$p \mathrm{He}@87~\mathrm{GeV}$	pNe@69~GeV	pAr@115 GeV
Integrated luminosity	7.6 nb^{-1}	$\sim 100 \ {\rm nb}^{-1}$	$\sim 45 \ \mathrm{pb}^{-1}$
syst. error on J/ψ x-sec.	7%	6 - 7%	2 - 3 %
J/ψ yield	400	15k	15M
D^0 yield	2000	100k	150M
Λ_c^+ yield	20	$1\mathrm{k}$	1.5M
$\psi(2S)$ yield	negl .	150	150k
$\Upsilon(1S)$ yield	negl.	4	7k
Low-mass Drell-Yan yield	negl.	5	9k

Important experimental inputs to heavy ion and high-x parton PDFs studies (**intrinsic charm contribution**), that impact the understanding of the development of UHE atmospheric shower:

- Study nuclear effects in charm production in different collision systems.
- Study **baryon and** *K* **production in** *pN* **and** *pO* to understand muon production offaxis in extensive showers.

Conclusions

LHCb is the first fixed-target experiment exploiting the energy and the intensity of LHC, providing unique measurements of interest to CR physics.

- Thanks to its forward geometry, its excellent vertexing, tracking and PID performances and the possibility to inject gas in LHC beam pipe, LHCb is developing a **pioneering fixed-target programme in a mostly unexplored kinematic regime**.
- The charm production studies at LHC fixed-target collisions and pp at high Q² are helpful to the modelling of atmospheric neutrino production at UHE.
- The **measurement at fixed-target of** $\sigma(pHe \rightarrow \overline{p}X)$ with a 6.5 TeV proton beam helped to improve the secondary \overline{p} flux predictions.
- The analysis on the Run2 samples are still ongoing.
- The LHCb fixed-target programme **upgrade SMOG2** will overcome many difficulties of the current system, operating with up to x100 gas pressure and more gas species.
- Preliminary results indicate that LHCb could be the first LHC detector running in collider and fixed target mode at the same time.

Antiproton production measurement

SMOG is not equipped with precise gauges for the gas pressure:

- → Luminosity is determined through pe elastic scattering with gas atomic electrons.
- *pe* events are identified as an isolated low-energy electron track.
- Charge symmetric background is evaluated through positron yield and subtracted from electron yield.
- Poor electron reconstruction efficiency (16%) → 6% uncertainty on luminosity

$\frac{\text{Dominant contribution to systematic}}{\text{uncertainty on } \sigma!}$

(Uncertainty is still lower than the spread among models)

Chiara Lucarelli, 29/10/2021, TeVPA 2021

PRL 121 (2018) 222001

Antiproton production measurement

PRL 121 (2018) 222001

- Result on cross section is compared to EPOS-LHC, EPOS-1.99, QGSJETII, HIJING 1.38, PYTHIA6.
- Experimental uncertainties (<10%) are lower than the spread among theoretical models.
- Large excess is observed over EPOS-LHC (used for simulation).
- The total visible cross section is still consistent with the simulation:

 $\sigma_{vis}^{LHCb}/\sigma_{vis}^{EPOS-LHC} = 1.08 \pm 0.07 \pm 0.03$

 The measured excess is due to underestimated antiproton multiplicity.

Anti-nuclei production

PRD 88 023014

 \overline{d} formation is described via the coalescence of a \overline{p} - \overline{n} pair:

$$\gamma_{\bar{d}} \frac{d^3 N_{\bar{d}}}{d^3 k_{\bar{d}}} (\vec{k}_{\bar{d}}) = \frac{4}{3} \pi p_0^3 \cdot \gamma_{\bar{p}} \gamma_{\bar{n}} \frac{d^3 N_{\bar{p}} d^3 N_{\bar{n}}}{d^3 k_{\bar{p}} d^3 k_{\bar{n}}} \left(\frac{\vec{k}_{\bar{d}}}{2}, \frac{\vec{k}_{\bar{d}}}{2}\right) \quad (1)$$

Factorization hypothesis and *isospin invariance* hypothesis:

$$\gamma_{\bar{d}} \frac{\mathrm{d}N_{\bar{d}}}{\mathrm{d}^{3}k_{\bar{d}}}(\vec{k}_{\bar{d}}) = R_{n}(\sqrt{s + m_{\bar{d}}^{2} - 2\sqrt{s}E_{\bar{d}}}) \cdot \frac{4}{3}\pi p_{0}^{3} \cdot \left[\gamma_{\bar{p}} \frac{\mathrm{d}N_{\bar{p}}}{\mathrm{d}^{3}k_{\bar{p}}}\left(\frac{\vec{k}_{\bar{d}}}{2}\right)\right]^{2} \quad (2)$$

where R_n is associated to the reduction of the phase space after the production of the first nucleon.

For an anti-nucleon with mass number A, under the same hypotesis:

$$\gamma_A \frac{\mathrm{d}N_A}{\mathrm{d}^3 k_A} (\vec{k}_A) = R_n (\sqrt{s + m_A^2 - 2\sqrt{s}E_A}) \cdot \left(\frac{4\pi}{3} p_0^3\right)^{(A-1)} \cdot \left[\gamma_{\bar{p}} \frac{\mathrm{d}N_{\bar{p}}}{\mathrm{d}^3 k_{\bar{p}}} \left(\frac{\vec{k}_A}{A}\right)\right]^A \quad (3)$$

Alternative parameter: $B_A = \frac{A}{m_p^{A-1}} \left(\frac{4\pi}{3} p_0^3\right)^{A-1}$ <u>PRD 96 103021</u>