Searches for Higgs Boson Pair Production with the Full LHC Run 2 Dataset in ATLAS

Yanlin Liu (刘彦麟)

On behalf of the ATLAS Collaboration TeVPA 2021, October 25-29

10/27/21

Physics Motivation

 $V(\phi^{\dagger}\phi) = \mu^{2}\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^{2}$ Direct access to λ in Higgs boson pair (HH) production Standard Model (SM) prediction: $\lambda = \sim 0.13$

10/27/21

New physics can alter the Higgs boson self coupling λ , therefore measuring κ_{λ} ($\lambda_{\rm HHH}/\lambda_{\rm SM}$) via searches for HH production is important for studying the Higgs boson property and probing physics Beyond the SM (BSM)

SM Non-resonant HH Production

Gluon-gluon fusion (ggF) production mode: 31.05 fb H g wwwwwww H K_{λ} H g wwwwwww H H g wwwwwww H

Vector boson fusion (VBF) production mode: 1.73 fb

10/27/21

New physics can appear as κ_{λ} != 1, which will have impact on σ_{HH} and kinematics

BSM Resonant HH Production

- Various BSM theories predict heavy resonances which can decay into Higgs bosons pair, such as
 ➢ Spin-o heavy scalars
 - > Spin-2 gravitons from the Randall–Sundrum model
- Only ggF production mode is considered for the resonant searches in the talk today

HH Decay Channels

~4k HH events expected to be produced during Run 2 Complementarity and combination of various decay channels to maximize the sensitivity

Branching Ratio	bb	WW	ττ	ZZ	γγ
bb	33%				
WW	25%	4.6%			
ττ	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0005%

- For the talk today, I will cover the latest results at ATLAS:
 - ≻ HH→bbττ (non-resonant and resonant): <u>ATLAS-</u> <u>CONF-2021-030</u>
 - ≻ HH→bbγγ (non-resonant and resonant): <u>ATLAS-</u> <u>CONF-2021-016</u>
 - ≻ HH→bbbb (resonant): <u>ATLAS-CONF-2021-035</u>
 - ➢ HH combination: <u>ATLAS-</u> <u>CONF-2021-052</u>

Non-resonant HH Search

HH→bbττ Analysis

- 7.4% of the total HH branching ratio (BR): relatively clean signature and low background
- Signal signature: two b-jets (DL1r tagger, 77%) and $\tau_{had}\tau_{had}/\tau_{lep}\tau_{had}$ with opposite charge

Signal region	Tau/Lepton	Trigger
$ au_{ m had} au_{ m had}$	2 hadronic τ	Single or Di-tau Trigger
$ au_{ m lep} au_{ m had} m SLT$	1 hadronic τ + 1 e/µ	Single lepton trigger (SLT)
$ au_{ m lep} au_{ m had}$ LTT	1 hadronic τ + 1 e/ μ	Lepton+tau trigger (LTT)

- Real τ background from simulation; fake τ background estimated with data-driven methods
- Multivariate (MVA) method used for signal and background separation

Non-resonant HH→bbττ **Results**

CL: $4.7 (3.9) \times \sigma_{SM}$ 4x improvement over 36.1 fb⁻¹ result (12.7 × σ_{SM}) Observed (expected) constraint on κ_{λ} : -2.4 $\leq \kappa_{\lambda} \leq 9.2$ (-2.0 $\leq \kappa_{\lambda} \leq 9.0$)

$HH \rightarrow bb\gamma\gamma$ Analysis

Yanlin Liu

- 0.26% of HH BR, H→γγ decay provides clean trigger, event selection and excellent m_H resolution
- 2 photons, 2 b-jets (DL1r, 77%)
- 105 GeV < $m_{\gamma\gamma}$ < 160 GeV \rightarrow final discriminant for fitting
- Non-resonant: 4 categories (split by $m_{bb\gamma\gamma}^*$ at 350 GeV, and then split by BDT into tight and loose)

 $m^*_{b\bar{b}\gamma\gamma} = m_{b\bar{b}\gamma\gamma} - m_{b\bar{b}} - m_{\gamma\gamma} + 250 \text{ GeV}$

• Resonant: 1 category based on BDT output

10/27/21

Q

Non-resonant HH \rightarrow bbyy Results

previous result (25 × σ_{SM}), 3× due to analysis improvement

 $\leq \kappa_{\lambda} \leq 6.7 (-2.4 \leq \kappa_{\lambda} \leq 7.7)$

HH Combination

- Performed statistical combination for different HH analyses to maximize sensitivity to HH production
- Non-resonant: including $bb\tau\tau$ and $bb\gamma\gamma$
 - → bb $\tau\tau$ outperforms at around $\kappa_{\lambda} = 1$ due to more boosted signal and higher BR, while bb $\gamma\gamma$ outperforms at high κ_{λ} values due to high acceptance
- Systematics correlated where appropriate (like luminosity, flavor tagging, signal theory uncertainties, etc)

Non-resonant Combination Result

strength and κ_{λ} to date!

10/27/21

Resonant HH Search

Resonant HH \rightarrow **bb** $\tau\tau$ **Results**

Observed (expected) upper limits: 920-23 fb (840-12 fb) depending on the mass region Local (global) significance for 1 TeV is 3.0σ (2.0σ)

10/27/21

Resonant HH\rightarrowbb\gamma\gamma Results

- The obs. (exp.) limits: 610–47 fb (360–43 fb) in the range 251–1000 GeV
- 2-3× improvement depending on the mass range compared with previous publication

Resonant HH→bbbb Analysis

- 4b channel has largest BR (33%) but suffering from large background from multi-jet process
- Two channels: resolved and boosted

10/27/21

- Resolved: 4 b-tagged jets; targeting low mass region (251 GeV to 1.5 TeV)
- Boosted: 2 large-R jets as Higgs candidates; targeting high-mass region (900 GeV to 3 TeV)

Resonant HH→bbbb Results

For excess at 1.1 TeV, the local (global) significance: 2.6 σ (1.0 σ) for spin-0 and 2.7 σ (1.2 σ) for spin-2

Yanlin Liu

10/27/21

Resonant Combination Result

No statistically significant excess found, largest excess at 1.1 TeV: local (global) significance is 3.2σ (2.1 σ)

Yanlin Liu

10/27/21

Summary

- Presented the latest HH searches with $bb\tau\tau$, $bb\gamma\gamma$ and bbbb final states, as well as the HH combination
- Significant improvement on the results comparing with the previous publications: the best constraints on HH signal strength and κ_{λ} is shown!
- ~300 fb⁻¹ data expected during the LHC Run 3, which can provide more room for probing HH production
- More exciting results in the coming years!

Resonant HH→bbbb

- Resolved: multi-jet (95%) and ttbar (5%); data-driven estimation
- Boosted: multi-jet from data-driven estimation; ttbar from simulation

Yanlin Liu

10/27/21

HL-LHC Projection

Channel	Measured μ (Statistical-only)	Measured μ (Statistical + Systematic)
$HH \rightarrow b\bar{b}b\bar{b}$	1.0 ± 0.6	1.0 ± 1.6
$HH ightarrow b ar{b} au^+ au^-$	1.0 ± 0.4	1.0 ± 0.5
$HH ightarrow b\bar{b}\gamma\gamma$	1.0 ± 0.6	1.0 ± 0.6
Combined	1.00 ± 0.31	1.0 ± 0.4

Scenario	$1\sigma \text{ CI}$	$2\sigma \mathrm{CI}$
Statistical uncertainties only	$0.4 \le \kappa_\lambda \le 1.7$	$-0.10 \le \kappa_{\lambda} \le 2.7 \cup 5.5 \le \kappa_{\lambda} \le 6.9$
Systematic uncertainties	$0.25 \le \kappa_\lambda \le 1.9$	$-0.4 \le \kappa_\lambda \le 7.3$

ATL-PHYS-PUB-2018-053

