TeVPA 2021

Measurement of top-quark cross sections and properties with the ATLAS detector at the LHC

Peter Berta on behalf of the ATLAS Collaboration

Charles University, Prague

29 Oct 2021

Top quark production at LHC

- Millions of top quarks produced at LHC
- Two main production modes:
 - pair production mainly via strong interaction
 - single top electroweak interactions
- Measurements of cross section and properties important for many reasons:
 - Precision test of the Standard Model
 - Sensitivity to new physics beyond the Standard Model
 - Parameters of Standard Model Effective Field Theory (SMEFT)
 - PDF fits
 - Parameters of MC generators
 - Important for many searches since top quark production is background for them

Recent top-quark measurements in ATLAS

- $t\bar{t}$ differential cross sections in boosted topology:
 - Iepton+jets selection: ATLAS-CONF-2021-031
 - all-hadronic selection: ATLAS-CONF-2021-050
- Top-quark properties
 - $t\bar{t}$ charge asymmetry: ATLAS-CONF-2019-026
 - $t\bar{t}$ +jet energy asymmetry: arXiv:2110.05453
 - Polarization in single-top production: ATLAS-CONF-2021-027

- All these measurements use proton-proton collisions from full Run2
 - 13 TeV, 139 fb⁻¹

tt̄ differential cross sections lepton+jets

$t\bar{t}$ differential cross sections, lepton+jets

• ATLAS-CONF-2021-031

- Single and double-differential cross sections as a function of:
 - top-quark observables: $p_{\rm T}^{t\bar{t}}$, $p_{\rm T}^{\rm top}$, $m^{t\bar{t}}$,...
 - number of additional jets
- Boosted top quark identified in large-radius jets
- Unfolded to particle level using iterative Bayesian unfolding
- Main uncertainty: Signal modeling

$t\bar{t}$ differential cross sections, SMEFT interpretation

- The measurement is consistent with most predictions based on SM
- SMEFT interpretation to constrain Wilson coefficients C_{tG} and $C_{tg}^{(8)}$:
 - using hadronic top p_{T}
- Tested the impact of Wilson coefficients on the unfolding
 - found negligible impact on unfolded results
- Obtained more stringent limits on C⁽⁸⁾_{tq} than in the recent global fit arXiv:2105.00006

Wilson coefficient	Marginalised 95% intervals		Individual 95% intervals		
	Expected	Observed	Expected	Observed	Global fit [101]
C_{tG}	[-0.44, 0.44]	[-0.68, 0.21]	[-0.41, 0.42]	[-0.63, 0.20]	[0.007, 0.111]
$C_{ta}^{(8)}$	[-0.35, 0.35]	[-0.30, 0.36]	[-0.35, 0.36]	[-0.34, 0.27]	[-0.40, 0.61]

tī differential cross sections all-hadronic

$t\bar{t}$ differential cross sections, all-hadronic

• ATLAS-CONF-2021-050

- All-hadronic
 - both top quarks boosted
- Boosted top quark identified in large-R jets
- Unfolded to parton and particle levels using iterative Bayesian unfolding
- Single-, double-, and triple-differential cross sections
- Main uncertainties: Data statistics, JES, top-tagging
- Measurement consistent with the SM prediction

$t\bar{t}$ differential cross sections, all-hadronic, SMEFT interpretation

- The measurement is consistent with the SM prediction
- SMEFT interpretation to constrain 7 Wilson coefficients
- Using hadronic top p_T
- The coefficients are constrained one at a time in the right plot

$t\bar{t}$ charge asymmetry

$t\bar{t}$ charge asymmetry

• ATLAS-CONF-2019-026

- Evidence for charge asymmetry
- Lepton+jets selection
- Boosted top quark identified in large-R jets
- Inclusive and differential as a function of $m_{t\bar{t}}$ and longitudinal boost of $t\bar{t}$ system
- Unfolded to parton level using Fully Bayesian Unfolding
- Main uncertainties: Data statistics, signal and background modelling

$t\bar{t}$ charge asymmetry, SMEFT interpretation

- Measurement consistent with SM prediction
- 68% CL on SMEFT parameter C^-/Λ^2
 - linear combination of seven 4-fermion operators in the Warsaw basis

$$\begin{split} C_{u}^{1} &= C_{qq}^{(8,1)} + C_{qq}^{(8,3)} + C_{ut}^{(8)} \\ C_{u}^{2} &= C_{qu}^{(1)} + C_{qt}^{(1)} \\ C_{d}^{1} &= C_{qq}^{(8,1)} - C_{qq}^{(8,3)} + C_{dt}^{(8)} \\ C_{d}^{2} &= C_{qd}^{(1)} + C_{qt}^{(1)} \\ C_{u}^{1} &= C_{d}^{1} = C^{1} \\ C_{u}^{-} &= C^{1} - C^{2} \end{split}$$

$t\bar{t}$ +jet energy asymmetry

$t\bar{t}$ +jet energy asymmetry

• arXiv:2110.05453

Energy asymmetry A_E:

- Similar observable as the charge asymmetry
- Optimized for *tt* production in association with a jet
- Measured as a function of θ_j
 - θ_j angle between the additional jet and the z-axis in the tt
 +jet system
- Lepton+jets selection
 - hadronic top quark boosted
- Main uncertainties: Data statistics

$$A_E(\theta_j) \equiv \frac{\sigma^{\text{opt}}(\theta_j | \Delta E > 0) - \sigma^{\text{opt}}(\theta_j | \Delta E < 0)}{\sigma^{\text{opt}}(\theta_j | \Delta E > 0) + \sigma^{\text{opt}}(\theta_j | \Delta E < 0)}$$
$$\sigma^{\text{opt}}(\theta_j) = \sigma(\theta_j | y_{t\bar{t}j} > 0) + \sigma(\pi - \theta_j | y_{t\bar{t}j} < 0)$$

$$\Delta E = E_t - E_{\bar{t}}$$

$t\bar{t}+{ m jet}$ energy asymmetry, SMEFT interpretation

- Measurement consistent with the SM prediction
- SMEFT interpretation to constrain 6 Wilson coefficients

Polarization in single-top production

Polarization in single-top t-channel production

- ATLAS-CONF-2021-027
- t-channel production
 - targetting leptonic decay of \boldsymbol{W}

- Measuring angle θ of the lepton in the reference frame $\{x', y', z'\}$
 - z' in the direction of the spectator quark
 - top-quark rest frame

Polarization in single-top production, SMEFT interpretation

- Measurement consistent with the SM prediction
- SMEFT interpretation to constrain *O*_{tW} dipole operator

	C	W	C_{itW}		
	68% CL	95% CL	68% CL	95% CL	
All terms	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]	
Order $1/\Lambda^4$	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]	
Order $1/\Lambda^2$	[-0.2, 1.0]	[-0.7, 1.7]	[-0.5, -0.1]	[-0.8, 0.2]	

Summary

- The ATLAS experiment has an extensive program of top-quark measurements
- Measurements consistent with the Standard Model predictions
- Large potential to improve the MC configurations for the future
- Differential cross-section measurements probe the TeV scale
- Valuable inputs for the global EFT fits

Backup

$t\bar{t}$ decay channels

- Decay $t \longrightarrow Wb$ in ${\sim}100\%$
 - Signature depends on the decay mode of the W boson (leptonic or hadronic)
- Main selection regions for $t\bar{t}$: dilepton, lepton+jets, all-jets

Boosted top quark production

- Hadronically decaying boosted top quarks
 - $p_{\rm T}\gtrsim 300~{
 m GeV}$
 - Decay products start to overlap different identification methods are needed
- New physics can alter top quark production especially in the boosted phase space
- Boosted top quarks identified within large-R jets
 - Reduced combinatorics
 - Possibility to use large-R jet triggers

Type of measurements in ATLAS

Inclusive

- full phase space
- fiducial phase space
- Differential cross section as a function of certain observable defined at
 - parton level
 - full phase space
 - fiducial phase space
 - particle level
 - fiducial phase space

Parton level

- defined using particles before hadronization

Particle level

- defined using stable particles after hadronization ($c\tau > 1 \text{ cm}$) \Rightarrow reduction of signal modeling uncertainties

Fiducial phase space

typically chosen to be close to the phase space of the selected data
can use parton or particle level observables

Inclusive charge asymmetry

Inclusive $t\bar{t}$ differential cross section in fid. region, all-hadronic

Inclusive $t\bar{t}$ differential cross section in fid. region, lepton+jets

Inclusive $t\bar{t}$ differential cross section in fid. region, lepton+jets, NEW

