2021 TEV Particle Astrophysics Conference Heavy Dark Matter

Colliders

Zhen Liu
University of Minnesots
10/29/2021

Charter States & participation of the the the

The Quest for Dark Matter

-12 -10101220-2416 1822-28-26-20-18-16-1414 $10^{-22} \, {\rm eV}$ keV TeV $100 \, m_{\rm Pl}$ eV GeV m_{GUT} $m_{
m Pl}$ Bosonic Wave DM Thermal DM Composite, Primordial Black Holes Axion, ALPs, "Fuzzy" DM WIMPzillas, Nonthermal DM Dark Sectors, WIMPs

Dark Matter Mass $\log[m/\text{GeV}]$

Heavy DM @ Colliders

WIMP Dark Matter

Compelling, simple, predictive explanation for thermal, cold dark matter

Heavy DM at Colliders

Colliders can (via creative and ambitious efforts)

- Discover
- Test fully this regime
- Reveal their thermal mechanisms
- Check complimentarily and consistently

To search for: DM and its friends

WIMP:

Compelling, simple, predictive explanation for thermal, cold dark matter.

Outline

- Basics DM at Colliders
 - Missing Energy
 - Mediators
- Hunting DM's friends
 - Coannihilations
 - Long-Lived Hidden-sector
- Future Colliders
 - Minimal signatures
 - Disappearing Track

The program is extremely rich and active, I can only give you a flavor of the activities via representative examples here in this talk.

Outline

- Basics DM at Colliders
 - Missing Energy
 - Mediators
- Hunting DM's friends
 Cooppibilations
 - Coannihilations
 - Long-Lived Hidden-sector
- Future Colliders
 - Minimal signatures
 - Disappearing Track

Mono-jet (or generic MET searches)

Many possible operators (mediator types and interaction types) Searching for Missing Transverse Energy is an inclusive strategies

Colliders are to fully cover low mass and below, TeV scale

Heavy DM @ Colliders

Active Mediator Hunting

Many possible operators (mediator types and interaction types)

Searching for the mediators, e.g., Z', can provide complementary information.

Heavy DM @ Colliders

Outline

- Basics DM at Colliders
 Missing Energy
 Mediators
- Hunting DM's friends
 - Coannihilations
 - Long-Lived Hidden-sector
- Future Colliders
 - Minimal signatures
 - Disappearing Track

DM's friends: co-annihilators

Co-annhilation

- Dodge direct detection
- Ensure Thermal Relic
- Enable co-discovery of DM and New Physics (beyond DM)

Let's take a SUSY example.

8 TeV result by ZL, B. Tweedie, 1503.05923

DM Coannihilation and LLP

11

Keung, Low, Zhang <u>1703.02977</u> on DM relic

Mono-jet + (soft) displaced tracks

Coannihilation and LLP

Long-lived compressed stop

An, Hu, ZL, Yang, <u>2107.11405</u>

Our Endeavor with Open Data

CMS releases more than one petabyte of open data

This release includes datasets that were used to discover the Higgs boson

20 DECEMBER, 2017 | By Achintya Rao

Zhen Liu

CMS Experiment at the LHC, CERN Data recorded: 2012-Jul-04 16:35:06.057071 GMT Run / Event / LS: 198230 / 1096387771 / 1380

A collision event recorded by CMS in 2012 showing a "Higgs candidate", available on the CERN Open Data portal with the latest release of CMS Open Data. (Image: Tom McCauley/CMS/CERN)

TeVPA 2021

Heavy DM @ Colliders

10/29/2021

14

Studying and Validation

New constraints derived!

An, Hu, ZL, Yang, <u>2107.11405</u>

Generalize: search for hidden sector particles

Generalize: search for hidden sector particles

Zhen Liu

Heavy DM @ Colliders

Generalize: search for hidden sector particles

MATHUSLA Codex-B AL₃X Anubis FASER SHiP NA62 SeaQuest MoEDAL MilliQan

Central/Hard LLPs

Forward/lighter LLPs

Beamdump experiments

monopole millicharged particles The world is planning on conducting new experiments searching for these hidden long-lived particles.

Search for LLPs

Znen Liu

LLP Opportunities

SITP Seminar

4/30/2021

Outline

• Basics DM at Colliders

- Missing Energy
- Mediators

• Hunting DM's friends

- Coannihilations
- Long-Lived Hidden-sector
- Future Colliders
 - Minimal signatures
 - Disappearing Track

Our Approach: work on the "nightmare" scenario Consider the following "Minimal Dark Matter"*:

$egin{array}{cl} \operatorname{Model} \ (\operatorname{color},n,Y) \end{array}$		Therm. target
$(1,\!2,\!1/2)$	Dirac	1.1 TeV
$(1,\!3,\!0)$	Majorana	2.8 TeV
$(1,\!3,\!\epsilon)$	Dirac	2.0 TeV
$(1,\!5,\!0)$	Majorana	14 TeV
$(1,5,\epsilon)$	Dirac	6.6 TeV
$(1,\!7,\!0)$	Majorana	23 TeV
$(1,7,\epsilon)$	Dirac	16 TeV

"Nightmare":

- High thermal targets
 - 23 TeV for 7-plet Majarona
- Minimal signatures
 - Only missing energy (details next)

Additional considerations:

- Doublet □ "Higgsino"
- Triplet □ "Wino"
- Use "epsilon" notation to indicate Dirac case
- Even-plet requires non-zero Y (and additional splitting to suppress direct detection)
- Perturbative Unitarity
- Summonfeld and bound-state effect

 $<\sigma_{\chi\bar{\chi}\to VV}v>\simeq \frac{g_{2}^{4}n^{4}+16Y^{4}g_{1}^{4}+8g_{2}^{2}g_{1}^{2}Y^{2}n^{2}}{64\pi M_{\chi}^{2}g_{\chi}}$ 10/29/2021 21

Zhen Liu Heavy DM @ Colliders

Basic Pheno Considerations

"non-trivial" to consider MuC

- Minimal signature
 - Mass splitting O(few hundred MeV)
 - Decay products soft
 - Transition between states fast (<mm for most of the cases)
- Missing ET (at LHC)→Missing Mass (at MuC)

 $m_{\rm missing}^2 \equiv (p_{\mu^+} + p_{\mu^-} - \sum_i p_i^{\rm obs})^2$

Zhen Liu Heavy DM @ Colliders

Unique Mono-Muon Channel

Apparent "Charge Violation" channel (very different from the LHC)

Heavy DM @ Colliders

Zhen Liu

Signature: Energetic mono-muon

Muon pairs \Box muon + missing mass

One charge is missed due to the soft (nonreconstructable) decays of the charged states

Unique and powerful channel

TeVPA 2021

10/29/2021

Unique Mono-Muon Channel

Complex background compositions:

from missing a SM particles via various mechanisms

Collinear emissions, missing final state muons, properly calculated using photon PDF

Also includes dominant 2->2 processes with one of them decays forward

 $10^{\circ} < \theta_{\mu^{-}} < 90^{\circ}, \quad 90^{\circ} < \theta_{\mu^{+}} < 170^{\circ}$

 $E_{\mu^{\pm}} > 0.71, 1.4, 2.3, 3.2, 6.9, 22.6 \text{ TeV}, \text{ for } \sqrt{s} = 3, 6, 10, 14, 30, 100 \text{ TeV}$

Zhen Liu

Heavy DM @ Colliders

TeVPA 2021

10/29/2021

24

 $(\sqrt{s} = 3, 6, 10, 14, 30, 100 \text{ TeV})$

Summary (by channel)

- Mono-photon powerful for high n-j
- Mono-muon uniquely powerful low Higgsinos)
- VBF dimuon large room to improve assumed |\eta mu|<2.5, losing lots ^(1,5,0)

Zhen Liu Heavy DM @ Colliders

Disappearing Tracks: next to minimal signatures

TeVPA 2021

- Only useful for searches using charge 1 states
- Still, all higher charged states will cascade back to charge 1 states promptly
- Use all the production rates of charged states
- Mono-photon+disappearing tracks
- Beam Induced Background

Zhen Liu Heavy DM @ Colliders

$(\sqrt{s} = 3, 6, 10, 14, 30, 100 \text{ TeV})$

Summary (by channel)

- Mono-photon powerful for high n
- Mono-muon uniquely powerful lo Higgsinos)
- VBF dimuon large room to improvasumed |\eta mu|<2.5, losing lot^(1,5,0)
- Disappearing track great potentia (1,3, ϵ) kinematic limit)!

See also Capdevilla, Meloni, Simoniello, Zurita, <u>2102.11292</u>

TeVPA 2021

Zhen Liu

Heavy DM @ Colliders

Coverage

We only combine the missing mass searches (mono-muon, monophoton, VBF dimuon)

High Energy Muon Collider will cover all of them with different run energies.

Electroweak precision probes for these EW multiplets, mainly useful for the high n-plets.

Collider always provides definitive measures for new particles (even if we discover WIMP DM in e.g., DD).

Muon Collider 5σ Reach ($\sqrt{s} = 3$, 6, 10, 14, 30, 100 TeV)

Zhen Liu Heavy DM @ Colliders

A typical reach for hidden sector

A typical high E lepton collider reach:

- Pair production sensitivity directly to the threshold (so long decays being visible);
- High mass region with low boost can reach long lifetime easily;

Cui, Joglekar, ZL, Shuve, to CLIC physics book, <u>1812.02093</u>

Zhen Liu

Heavy DM @ Colliders

Summary

- Basics DM at Colliders
 - Missing Energy
 - Mediators
- Hunting DM's friends
 - Coannihilations
 - Long-Lived Hidden-sector
- Future Colliders
 - Minimal signatures
 - Disappearing Track

The program is extremely rich and active, I can only give you a flavor of the activities via representative examples here in this talk.

Colliders can (via creative & ambitious efforts)

• Discover

- Test fully this regime
- Reveal their thermal mechanisms
- Check complimentarily and consistently
- To search for: DM and its friends

A Vibrant Program

Thank you!

Zhen Liu

Heavy DM @ Colliders