Dark Matter Direct Detection Experiments

Yue Meng Shanghai Jiao Tong University mengyue@sjtu.edu.cn

Dark matter

\wedge Observations from 21 cm hydrogen 100 V(km/s)ected from visible disk 50 20 30 40 10 *R* (× 1000 ly) From Wikipedia

Gravitational evidences suggest dark matter is the dominant form of matter in Universe!

The solar system is cycling the center of galaxy with on average 220 km/s speed ..moving through the Dark Matter Halo From Marc Schumann 10⁻²¹eV neV μeV keV TeV M meV GeV general thermal WIMP pre-infl. QCD axion post-infl. sterne ADM fuzzy DM QCD axion neutrino ``classical" non-thermal WIMP (FIMP) QCD axion standard QCD axion thermal WIMP

Rotation curve of spiral galaxy M33

Dark matter detection

 $\chi + SM \rightarrow \chi' + SM'$

The dark matter direct detection

Nuclear recoils

Elastic Scattering of WIMPs off target nuclei

10/27/21

Underground laboratories and DM experiments

~GeV WIMP detection

Current status (WIMP-nuclei scattering)

Nal(Tl) or Csl(Tl) scintillator crystals Search for a possible dark matter-induced annually modulating signals

Advantage:

- simple design
- at room temperature
- stable for long term operation
- a large target mass

Disadvantage:

high intrinsic background

- DAMA @LNGS underground laboratory + ultra low-radioactive NaI(TI) crystals
- DAMA/LIBRA annual-modulated single-hit rate in the energy range
 (2 6) keVee
- SABRE @LNGS underground laboratory, highly pure NaI(TI) crystals in an active liquid scintillator veto to tag and reduce the 40K background from the crystals and the external background.
- ANAIS @LSC laboratory, 25 kg NaI(Tl) crystals, 250 kg improving the energy threshold and the internal radioactive contamination
- DM-Ice @South pole, 17kg of Nal crystals under the ice at the South pole at a depth of 2460 m, a reverse phase to the northern hemisphere
- PICO-LON @Kamioka mine, low radioactive Nal crystals with the aim to construct 250 kg setup in the COSINE (South Korea)
- KIMs @Yangyang laboratory, an array of 103 kg CsI(Tl) crystals
- COSINE @Yangyang laboratory, low radioactive Nal crystals

decreasing the software energy threshold down to 0.75 keV

A clear modulation is also present below 1 keV, from 0.75 keV, while *Sm* values compatible with zero are present just above 6 keV

ANAIS

Phys. Rev. D 103, 102005

- 112.5 kg of Nal(Tl) detectors
- Model independent
- three years exposure

incompatible with the DAMA/LIBRA result at 3.3 (2.6) σ

rules out model-dependent dark matter interpretations of the DAMA signals

Annual modulation search currently statistics limited

Single-phase (liquid) detectors

Argon, xenon, neon and krypton

Advantage:

- high light yield with 4π geometry
- dense target
- scale up to ton-scale easily
- pulse shape discrimination for Ar

Disadvantage:

- background discrimination
- position resolution

- DEAP @SNO laboratory, liquid argon in single phase, joined DarkSide
- CLEAN @SNO laboratory, liquid argon in single phase
- XMASS @Japan employs the single phase technology with about 800kg of liquid xenon, joined XENONnT collaboration
- ArDM @Canfranc underground laboratory in Spain

Single-phase (liquid) detectors

DEAP-3600

Simon Viel, *PoS* ICRC2021 (2021) 527

- 3.3 tonnes of liquid argon
- a total exposure of 758 tonne-days

Ionization detectors

Germanium and silicon semiconductor

ionization-mode, low threshold down to ~ 0.5 keVee allowing to search for WIMPs down to masses of a few GeV/c²

Advantage:

- excellent energy resolution
- very low thresholds, sensitivity to low-mass WIMPs
- background discrimination with rising time

Disadvantage:

- low temperature
- high purity target production

- CDEX @Jinping Underground Laboratory, Ge crystals
- CoGeNT @the Soudan Underground Laboratory, p-type point contact germanium detectors with a mass of 443g reaching an energy threshold of 500eVee.
- MAJORANA @the Kimballton underground research facility, low-background broad energy germanium detector

Directional detectors

the direction (head-tail asymmetry) of nuclear recoil events would be detected

Advantage:

- statistical discrimination
- nuclear recoil's track reconstruction

Disadvantage:

Heavy readout

- DRIFT-II TPC @Boulby underground laboratory, 0.140 kg + 55 mbar of a CS2 +CF4 +O2 mixture
- MIMAC @Modane underground laboratory (LSM) in France, 50 mbar of a mixture with CF4, 28% CHF3 and 2% C4H10.
- DMTPC, m3-scale TPC using CF4 at 50 Torr
- **NEWAGE** @Kamioka underground laboratory

Argon, xenon and helium

Advantage:

- self-shielding
- 3D position reconstruction
- background discrimination

Disadvantage:

low temperature

- PandaX-4T @Jinping underground laboratory, 4-ton Xe
- LZ @SURF underground laboratory, 7-ton Xe
- XENONnT @LNGS underground laboratory, 6.4 ton Xe
- DarkSide @LNGS underground laboratory, Ar

(S2/S1)_{NR}<<(S2/S1)_{ER}

PandaX-4T

Jianglai Liu, MG-16

- 3.7-tonne of liquid xenon target ٠
- an exposure of 0.63 tonne-year ٠

spin-independent WIMP-nucleon interactions

XENON1T

No significant ⁸B neutrinolike excess is found in an exposure of 0.6t×y

XENONnT

A. Kopec, J. Pienaar @ TAUP 2021

- 5.9 t LXe target
- Rn activity (goal): 1 µBq/kg
- in data taking phase

Electronic Recoil Excess in XENON1T

10/27/21

Electronic Recoil Excess in XENON1T

PandaX-II

The observed excess from XENON1T is within PandaX-II experimental constraints.

Axion Mass [keV/c²]

PandaX-II

White dwarfs

Gemma

Cryogenic bolometers

Detectors collecting the phonon signal produced in a crystal

Advantage:

- low thresholds
- excellent energy resolution
- background discrimination
- location of the recoil

Disadvantage:

- limited size
- Complicates scale up

- CDMS/CDMS II @Soudan Underground Laboratory, 19Ge and 11Si detectors with a mass of 230g and 100g each
- SuperCDMS @SNOLAB, iZIP detector, interleaved structure of the phonon and ionisation electrodes at the top and bottom faces of the crystals, 5 Ge crystals with masses of 0.6kg
- CDMSlite, larger bias boosts phonon signals from drifting charges to lower energy threshold
- EDELWEISS @Laboratoire Souterrain de Modane (LSM), thermalized phonons with NTDs, 800g germanium bolometers
- CRESST-II @Laboratori Nazionali del Gran Sasso (LNGS), both phonon signal and the scintillation light, CaWO4 crystals, 300 g x 8
- **ROSEBUD** @ Canfranc Underground Laboratory, sapphire crystals
- EURECA (European Underground Rare Event Calorimeter Array), aims to build a facility to operate 1000kg of cryogenic detectors, both CaWO4 and Ge detectors

Bubble chambers

Superheated fluids

The liquids are kept at a temperature just above their boiling point such that a local phase transition will create a bubble

Advantage:

- low thresholds
- immune to electronic recoils

Disadvantage:

- No energy reconstruction
- complicated calibration

- PICO(PICASSO, COUPP), @SNOLAB 52kg C3F8
- SIMPLE, @LSBB in France, 15g of C2CIF5 as a target

Spherical gaseous detector

NEWS-G

Marie-Cécile Piro and Daniel Durnford, TAUP 2021

- a noble gas mixture
- Energy threshold ~10 eV

(1) Primary Ionization(2) Drift of charges(3) Avalanche of secondary

Sub-GeV WIMP detection

CCD

SENSEI

Phys. Rev. Lett. 125, 171802

- ultralow-noise silicon Skipper charge-coupleddevices (Skipper CCDs)
- ~2g Si-CCD provides best limits >500 keV/c²

Migdal effect

XENON1T

Phys. Rev. Lett. **125**, 171802

• searching for nuclear recoils further into the MeV/c2-regime

WIMP-e⁻ scattering

WIMP future

TeVPa 2021 -- Yue Meng

Summary

- Diverse direct detection
 techniques are applied to search
 WIMPs
- Unexplored parameter space will be scanned with next generation

DM experiments

Thank you for listening!

Many materials borrowed from public talks presented by individual collaborations arXiv: 1509.08767, 1903.03026, 2104.07634