

XENON

The XENON Dark Matter Search Experiment

Fei Gao Tsinghua University

On behalf of the XENON Collaboration

TeVPA 2021, Chengdu Oct 25-31, 2021

Direct Detection of Dark Matter

15 JUNE 1985

PHYSICAL REVIEW D

VOLUME 31, NUMBER 12

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

DM

The XENON Collaboration

Development of XENON Program

XENON10 XENON100 XENON1T XENONnT

2005-20072008-20162012-20182019-202x25 kg - 15cm drift161 kg - 30 cm drift3.2 ton - 1 m drift8.6 ton - 1.5 m drift~10-43 cm2~10-45 cm2~10-47 cm2~10-48 cm2

Gran Sasso: The XENON Shield

Two-phase Xe Time Projection Chamber

- **Scintillation light S1** •
- **Ionization electron -S2** •

- two signals for each event: •
 - 3D event imaging: x-y (S2) and z (drift time)
 - self-shielding, surface event rejection, single vs multiple scatter events

Two-phase Xe Time Projection Chamber

Scintillation light - S1

S1

Ionization electron -S2

S2

- two signals for each event:
 - 3D event imaging: x-y (S2) and z (drift time)
 - self-shielding, surface event rejection, single vs multiple scatter events

What do We Search in XENON

Dark Matter Search Results

	Source	1.3 t	1.3 t, NR Ref.	0.9 t, NR Ref.	
	ER	627 ± 18	1.6 ± 0.3	1.1 ± 0.2	
No significant Excess!	Radiogenic	1.4 ± 0.7	0.8 ± 0.4	0.4 ± 0.2	
.	CEvNS	0.05 ± 0.01	0.03 ± 0.01	0.02	
	Accidental	0.5 +0.3-0.0	0.10 + 0.06 - 0.00	0.06 +0.03 -0.00	
	Surface	106 ± 8	4.8 ± 0.4	0.02	
	Total	735 ± 20	7.4 ± 0.6	1.6 ± 0.3	
	200 GeV WIMP	3.6	1.7	1.2	
PRL 121, 111302 (2018)	Data	739	14	2	
ER Surface Neutron AC WIMP R [cm]					
$H = \frac{1}{2000}$ $H = $		30			
0 3 10 20 30 40 50 60	70 500	1000	1500		
CSI [PE]		R^{2} [cm ²]		9	

Constraints on Dark Matter Interactions

Solar B8 "Neutrino Fog"

 $R = \phi(\nu) \times \sigma_{\nu} \times N_{Xe} \times \text{exposure}$ $\simeq 600 \text{ events}/(\text{tonne} \times \text{year})$

PRL 126, 091301 (2021)

Analysis towards the B8 "Neutrino Fog"

#1: "S2-only" approach

A limit setting analysis (expect 2.0±0.3 CEvNS)

#2: lowering S1 & S2 together

- S1: 2 or 3 photons
- S2: ~4 18 electrons

PRL 126, 091301 (2021)

12

11

Source	Expectation		
CEvNS	2.25		
Accidental	5.14		
ER	0.21		
Radiogenic	0.03		
Total	7.65		

Search for Double Beta Decays

Low Energy ER Background

Axion explanation is in tension with stellar constraints

Tritium? Possible!

XENONnT: Currently running at Gran Sasso

Goal: ~4.0 ton fiducial volume

~1/6 XENON1T ER background level

~1 neutron induced background in 20 ton-year exposure

JCAP 11 (2020) 031

Upgrading to XENONnT

XENONnT Cryogenic Liquid Purification

Cryostat is filled with ~8.5t of LXe

Ехр	Max Drift [ms]	Electron lifetime [ms]	Cathode electron survival	Purification speed
XENON1T	0.73	0.65	30%	0.65ms in ~ 3 months
XENONnT	2.2	~10	>90%	5ms in ~5 days

Calibrating XENONnT

• XENONnT's 5.9-ton LXe sensitive volume is calibrated from keV to MeV

- XENONnT Calibration Campaign
 - Kr83m: uniformity, light/charge yield etc
 - Rn220: Low Energy ERs
 - AmBe: Low Energy NRs, high energy ERs
 - Other calibrations: PMTs etc

XENONnT Neutron Veto

- Gd-Water Cherenkov veto detection (designed efficiency >85%)
- Neutron background reduced to < 1 events / (20 tonne year)

XENONnT Radon Distillation Column

- Initial gas phase only distillation reduced the radon level to 1.7 μ Bq/kg
- Lowest radon level ever achieved in a LXeTPC

Summary

XENON1T: Still leading the search of many rare phenomena:

- WIMPs search
- Solar B8 "Neutrino Fog"
- Solar Axions
-

XENONnT: running at Gran Sasso

- lower background
- larger exposure
- higher sensitivity