

Galactic Science with the Southern Wide-field Gamma-ray Observatory

R. López-Coto, A. Mitchell, E.O. Angüner, G. Giacinti for the SWGO Collaboration

Funded by H2020 Marie Sklodowska Curie FELLINI -Grant 75449<u>6</u>

The EM spectrum

VHE gamma rays: different techniques

SWGO

Southern Wide-field Gamma-ray Observatory

- In comparison to previous detectors (HAWC) -> Higher altitude, larger area, higher efficiency detection units, larger fill factor.
 - => lower threshold and better sensitivity.
- Collaboration established in July 2019 to develop the design/plan.
- First collaboration meeting October 2019.
- 3 year programme, 12 countries signed up + supporting scientists.

Countries in SWGO

Argentina*, Brazil, Chile, Czech Republic, Germany*, Italy, Mexico, Peru, Portugal, South Korea, United Kingdom, United States*

Supporting

scientists Australia, Bolivia, Costa Rica, France, Japan, Poland, Slovenia, Spain, Switzerland, Turkey

*also supporting scientists

Galactic Science

 Several Science cases within the Galaxy for which SWGO can add a significant contribution

Pulsar Wind Nebulae and Halos

Giacinti et al, A&A 636 (2020) A113

- Halos are a distinct phase in the evolution of Pulsar Wind Nebulae
 - → Regions in which electrons and positrons generated in the pulsar magnetosphere propagate freely into the Interstellar Medium
- They can reach large sizes

Halos: Status

- Halos mainly studied by widefield instruments due to their extension -> far away ones are less bright.
- ◎SWGO can:
 - → Characterize nearby ones through morphological measurements
 - → Observe and detect further away ones -> need to have a good angular resolution to avoid source confusion.

Halos: Observability

- We took all nearby (<500 pc) pulsars likely to produce a TeV halo
- Some TeV halo candidates out of the reach for low latitudes.
- On the other hand, high latituc sites imply short exposures for two sure TeV halos (Geminga and PSR J0659).

Halos: Sensitivity to known pulsars

- Sensitivity shown uses
 SWGO straw-man IRFs
- Also interested on further sources to complete these studies.
- The grey-dashed line should become flat when we hit the angular resolution of SWGO

Halos: SWGO Requirements

- Requirements: Angular resolution
 - → 0.5 deg to resolve 93% of the sources
 - → 0.2 deg to resolve 98% of the sources
 - → Including all simulated/predicted halos and HGPS sources

PeVatrons

Prospects for PeVatrons

• PeVatron detection can be done by spectral investigation.

- → Understand which spectral cutoff energies can be detected with SWGO.
- → Estimate number of PeVatron sources that can be detected / identified with SWGO when final IRFs are available.

Galactic Diffuse γ-ray Emission and Fermi Bubbles

Diffuse emission and Fermi Bubbles

- Diffuse emission from the Galactic Plane should extend up to PeV energies.
 - Wide-field instruments are optimal for the detection of very extended emission.
 - SWGO guarantees a detection of the extended spectrum up to multi-TeV energies
- The Fermi Bubbles are bubble-like structures seen in radio and gamma rays.
 - Their detectability will depend on the extension of their spectrum to TeV energies.

Conclusions

• Very promising Galactic Science with SWGO:

 Progress in TeV halos studies: several new sources apart from the already known ones are expected

Number of accessible PeVatrons depends on the final layout selected

Diffuse Galactic gamma-ray emission and Fermi Bubbles under study

 For more info, please refer to the published proceeding (https://arxiv.org/pdf/2109.03521.pdf)