Searches for BSM Higgs bosons at CMS

TeVPA2021: TeV Particle Astrophysics 2021 (24-29 Oct 2021)

S. Konstantinou¹

on behalf of the CMS Collaboration

¹University of Cyprus

26 Oct 2021

Introduction

Many beyond the standard model (BSM) theories predict the extension of the Higgs sector

- Minimal possible extensions are the two-Higgs-doublet models (2HDMs) < MSSM</p>
 - Introduce an adddional Higgs doublet
 - ▶ Predict 5 Higgs bosons: CP-even h^0 , H^0 , CP-odd A, H^{\pm}
- ► 2HDM extensions add one singlet field (2HDM+S) < NMSSM
 - Two additional Higgs bosons $h^{'}$ and $A^{'}$
- Higgs triplet models introduce a scalar triplet < GEORGI-MACHACEK</p>
 - Predict the presence of $H^{\pm\pm}$

The observation of an additional Higgs particle would be an evidence of new physics!

Introduction

CMS is broadening the searches of extended Higgs sectors

- ▶ New signal signatures, extended phase space, modern techniques, ...
- This talk presents the latest CMS results
 - Exotic decays of SM H(125) are not covered

2016 data (35.9 fb⁻¹)

$$\rightarrow$$
 H[±] \rightarrow cs
 \rightarrow H $\rightarrow \alpha \alpha \rightarrow \mu \mu \tau \tau$

Full Run II data (137 fb⁻¹)

$$\rightarrow$$
 H^{±(±)} \rightarrow W[±]Z₀(W[±]W[±])
 \rightarrow H \rightarrow h(125)h_S \rightarrow $\tau\tau$ bb
 \rightarrow H₁H₁ \rightarrow bbbb (SUSY cascade decays)

Searches with 2016 data

$\mathrm{H^{\pm} \rightarrow cs}$ arXiv:2005.08900

- Light H^{\pm} with $m_{H^{\pm}} < m_t$
- $\mathcal{B}(H^{\pm} \rightarrow cs)$ dominant for low tan β in 2HDM Type II
- ℓ +jets (e or μ) FS characterized by: 1 isolated ℓ , \geq 4 jets (\geq 2 b jets, \geq 1 c jet), p_{τ}^{miss}
- Main background: tt, Single-t, QCD, V+jets, Diboson

QCD bkg estimated from data ("ABCD"):

- Shapes: high p_T^{miss} , anti-isolated ℓ region
- Normal.: low p_{τ}^{miss} , (anti-)isolated ℓ regions

Kinematic Fit (KF):

g Dama

- Corrects 4-vectors of physical objects
- Constraints on $m_{b_{had} a \bar{a}}^{inv} = m_{b_{had} \ell \nu_{\ell}}^{inv} = m_t$
 - Categorization based on c-tagging WP (L,M,T)
 - Fit on m_{ii} of non-b jets
 - Upper limits of 1.68-0.25 for $m_{H^{\pm}} = 80-160 \,\, {
 m GeV}$
 - No signal excess above the SM background prediction

 H^+

 W^{-}

ላለለለለ

$H \rightarrow \alpha \alpha \rightarrow \mu \mu \tau \tau$ arXiv:2005.08694

SM-like H production via ggF or VBS decaying into a pair of light pseudoscalars α

- Focus on $m_H \ge 125$ GeV and $3.6 \le m_{\alpha} < 21$ GeV
 - High Lorentz boost because of $m_H \gg m_{\alpha}$
- Final state contains: $2\mu^{OS}$ & boosted $\tau_{\mu}\tau_{h}$
- τ -pair reconstruction technique targets boosted $\tau_{\mu}\tau_{h}$

Data modeling: Fit 2D $m_{\mu\mu} \times m_{\mu\mu\tau_{\mu}\tau_{h}}$ (in 3 $m_{\mu\mu}$ bins)

gluon gluon fusion

$H \rightarrow \alpha \alpha \rightarrow \mu \mu \tau \tau$ arXiv:2005.08694

SM-like H production via ggF or VBS decaying into a pair of light pseudoscalars lpha

- Focus on $m_H \ge 125$ GeV and $3.6 \le m_{lpha} < 21$ GeV
 - High Lorentz boost because of $m_H \gg m_{\alpha}$
- Final state contains: $2\mu^{OS}$ & boosted $\tau_{\mu}\tau_{h}$
- au-pair reconstruction technique targets boosted $au_{\mu} au_{h}$

- Signal: Voigtian × split normal distribution
- **•** Bkg: exp. (continuum) + Voigtian (SM $\mu\mu$ resonances) × error function+exp.

Sotiroula Konstantinou

6 of 16

Tue 26th Oct, 2021

$H \rightarrow \alpha \alpha \rightarrow \mu \mu \tau \tau$ arXiv:2005.08694

Fit of 2D discriminant $(m_{\mu\mu}, m_{\mu\mu\tau_{\mu}\tau_{h}})$ is performed in 3 ranges of the $m_{\mu\mu}$

Simultaneous unbinned fit of SR, CR, Sideband

- No deviation from SM is observed
- Model-independent upper limits at 95% CL
- Model-specific limits (2HDM+S) extend earlier CMS and ATLAS searches

Sotiroula Konstantinou

Searches with full Run II data

${\rm H}^{\pm} \to {\rm W}^{\pm}{\rm Z}_0$ and ${\rm H}^{\pm\pm} \to {\rm W}^{\pm}{\rm W}^{\pm}$ leptonic arXiv:2104.04762

- VBS production
- Leptonic final states characterized by:
 - $2\ell^{SS}$ or 3ℓ , p_T^{miss} , 2 jets (large $|\Delta \eta_{jj}|$, m_{jj})
- First results with 137 fb⁻¹

- **Nonprompt lepton**: from data with the "tight-to-loose" ℓ ratio, normalized in CR
- e sign misID: from simulation, applying data-to-sim efficiency correction (from $Z \rightarrow ee$ data)
- tZq and ZZ: from simulation, normalized in CRs
- WW and WZ: from simulation

Signal extraction

▶ 2D final discriminant: (m_T^{VV}, m_{jj})

$$m_T^{VV} = \sqrt{(\sum_i E_i)^2 - (\sum_i p_{z,i})^2}$$

► Simultaneous fit of WW, WZ SR and the non-prompt lepton, tZq, and ZZ CRs.

Sotiroula Konstantinou

$\mathrm{H} ightarrow \mathrm{h}(125)\mathrm{h_S} ightarrow au au \mathrm{bb}$ CMS-PAS-HIG-20-014

Gluon fusion production

▶ $h_S \rightarrow bb$ ▶ $h(125) \rightarrow \tau \tau$: Clean signature

• 3 final states $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$ characterized by:

• $1\ell 1\tau_h$ or $2\tau_h$ (OS, large ΔR), ≥ 2 jets, ≥ 1 b jet

Main background: tt, QCD, Z, Diboson, W+jets

Background estimation

- Genuine $\tau\tau$: τ -embedding (from $\mu\mu$ events, μ energy deposits replaced by simulated τ)
- ▶ $j \rightarrow \tau_h$: Fake factors applied in orthogonal region with looser τ_h ID
- **Z**, $t\bar{t}$, Diboson decaying to ℓ : from simulation

Event classification

Events categorization based on NN multiclassification (s+4b classes):

(1) " $\tau\tau$ " (2) "jet $\rightarrow \tau_h$ " (3) " $t\bar{t}$ " (4) "misc" (5) "signal"

- ▶ 68 NNs per category trained with different groups of m_H and m_{h_S}
- In total 45 categories: 3 years × 3 FS × 5 classes

$\mathrm{H} ightarrow \mathrm{h}(125)\mathrm{h_S} ightarrow au au \mathrm{bb}$ CMS-PAS-HIG-20-014

Signal extraction

- ▶ The NN score for the 45 event categories is used as a final discriminant
 - The fit is done for each of the 68 trainings independently
 - Background categories are used to constrain the background nuisance parameters

Model independent upper limits at 95% CL

- Upper limits of 125–2.7 fb for $m_H = 240-1000$ GeV
- No deviation from SM observed
- First LHC search of the process

Light H from SUSY cascade decays ${ m H_1H_1} ightarrow$ bbbb CMS-PAS-HIG-20-018

Light H from SUSY cascade decays ${\rm H_1H_1} \rightarrow$ bbbb CMS-PAS-HIG-20-018

• 3 H_T bins with 10 S_i regions distribution:

Post fit SR yields

Results compared with benchmark model

- ► Observed 95% CL upper limits of (σ × BR)/(σ × BR)_{theory}
- ▶ $1200 \le M_{SUSY} \le 2500$ GeV within $40 \le M_{H_1} \le 120$ GeV are excluded

Sotiroula Konstantinou

Tue 26th Oct, 2021

Summary

Latest searches for BSM Higgs bosons at CMS have been presented

- New unexplored signal signatures
- ► First results with Run II data collected by the CMS detector during 2016-2018
- Significant imrovements wrt previous results Large part of parameter space excluded
- No evidence for BSM physics observed
- More results to come with Run II data!

Thank you!

This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation under the projects **POST-DOC/0718/0169** and **EXCELLENCE/1918/0379**

Ευρωπαϊκή Ένωση Ευρωπαϊκά Διαρθρωτικά και Επενδυτικά Ταμεία

Κυπριακή Δημοκρατία

BACKUP

c-tagging efficiency

Working point	ϵ^{c} (%)	$\epsilon^{\rm b}$ (%)	$\epsilon^{ m udsg}$ (%)
Loose	88	36	91
Medium	40	17	19
Tight	19	20	1.2

 Model-independent upper limits for the individual final states, after combining the c-tagging categories

limits of 2.44-0.32% (μ +jets)

$\mu + jets$, Loose c-tagging $\mu +$

$\mu {\rm +jets},$ Tight c-tagging

limits of 2.77-0.26% (e+jets)

${ m H} ightarrow lpha lpha ightarrow \mu \mu au au$ arXiv:2005.08694

Data modeling: Fit 2D $m_{\mu\mu} \times m_{\mu\mu\tau_{\mu}\tau_{h}}$ (in 3 $m_{\mu\mu}$ bins)

- Signal: Voigtian × split normal distribution
- **b** Bkg: exp. (continuum) + Voigtian (SM $\mu\mu$ resonances) × error function+exp.

Tue 26th Oct, 2021

${\rm H}^{\pm} \to {\rm W}^{\pm} {\rm Z}_0$ and ${\rm H}^{\pm\pm} \to {\rm W}^{\pm} {\rm W}^{\pm}$ leptonic arXiv:2104.04762

Signal extraction

- Final discriminant is the 2D distribution: (m^{VV}_T, m_{jj})
- Simultaneous fit of WW and WZ SR

 m_T^{WZ} in WZ SR

m_{ii} in WZ SR

$\mathrm{H} ightarrow \mathrm{h}(125)\mathrm{h_S} ightarrow au au \mathrm{bb}$ CMS-PAS-HIG-20-014

NN score of the 4 background classes for the $\mu \tau_h$ final state

- Good separation and high purity of the correct bkg class as the NN score increases
- Background categories are used by the fit to constrain the background nuisance parameters