

Searches for Axion-Like Particles at CMS

Zebing Wang (IHEP, Beijing) on behalf of CMS

TeVPA2021: TeV Particle Astrophysics 2021.24-29 Oct 2021. Chengdu (China)

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Axion Like Particles

Gauge-singlets pseudoscalar particles.

$$\mathcal{L}_{\text{eff}}^{D \leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_{F} C_{F} \gamma_{\mu} \psi_{F} + g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu} ,$$

$$\mathcal{L}_{\text{eff}}^{D \geq 6} = \frac{C_{ah}}{\Lambda^{2}} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) \phi^{\dagger} \phi + \frac{C_{ah}'}{\Lambda^{2}} m_{a,0}^{2} a^{2} \phi^{\dagger} \phi + \frac{C_{Zh}'}{\Lambda^{3}} \left(\partial^{\mu} a \right) \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.} \right) \phi^{\dagger} \phi + \dots .$$

- (Approximate) shift Symmetry $a \rightarrow a + c$ ٠
- Appear in many well-motivated extensions of the SM •
- Decay widths to photons and leptons: ٠

$$\Gamma(a \to \gamma \gamma) \equiv \frac{4\pi \alpha^2 m_a^3}{\Lambda^2} \left| C_{\gamma \gamma}^{\text{eff}} \right|^2 \quad \text{,} \quad \Gamma(a \to \ell^+ \ell^-) = \frac{m_a m_\ell^2}{8\pi \Lambda^2} \left| c_{\ell \ell}^{\text{eff}} \right|^2 \sqrt{1 - \frac{4m_\ell^2}{m_a^2}}$$

Higgs Exotic decays: ٠

$$\begin{split} \Gamma(h \to Za) &= \frac{m_h^3}{16\pi\Lambda^2} \left| C_{Zh}^{\text{eff}} \right|^2 \lambda^{3/2} \left(\frac{m_Z^2}{m_h^2}, \frac{m_a^2}{m_h^2} \right) \\ \Gamma(h \to aa) &= \frac{v^2 m_h^3}{32\pi\Lambda^4} \left| C_{ah}^{\text{eff}} \right|^2 \left(1 - \frac{2m_a^2}{m_h^2} \right)^2 \sqrt{1 - \frac{4m_a^2}{m_h^2}} \end{split}$$

Colliders allow searches in a wide range of ALP masses and couplings. We can explore ALP ٠ masses beyond astrophysical constraints, and even there, provide important crosschecks. At the LHC, natural sensitivity is to Λ scales in the TeV region.

2021/10/24

TeVPA2021

Non resonant $pp \rightarrow a^* \rightarrow ZH$, ZV

CMS-B2G-20-013

- Dataset:
 - Full-run2 dataset: 2016 2018 (137 fb⁻¹)
 - $\sqrt{s} = 13 TeV$
- Signature:
 - $Z \to \ell^+ \ell^-$
 - Merged J or resolved jj di-jet
- Search for ALP mediated production of
 - Z boson + Higgs (chiral model)
 - Z boson + Z boson (linear model)
- Main background:
 - Z + jets
- Details about the signal modes [Phys.Rev.Lett. 124 (2020) 5, 051802]

137 fb⁻¹ (13 TeV)

TeVPA2021

Non resonant $pp \rightarrow a^* \rightarrow ZH, ZV$

CMS-B2G-20-013

- Combined maximum likelihood fit to the mass distribution ٠
- Exclusion region on the $c_i c_j f_a$ plane for the chiral and • linear models
 - 95 % CL limits obtained using CLs method
 - $f_a > 3$ TeV excluded extrapolating $f_a = 3$ TeV point linearly
- Limits on c_i/f_a :

 - $\begin{array}{l} \cdot \quad \frac{|c_{\widetilde{G}}c_{\widetilde{Z}}|}{f_a^2} < 0.0415(0.0400)TeV^{-2} \\ \cdot \quad \frac{|c_{\widetilde{G}}c_{\widetilde{2D}}|}{f_a^2} < 0.0269(0.0281)TeV^{-2} \end{array}$

2021/10/24

TeVPA2021

Light-by-Light Scattering

[Phys.Lett.B 797 (2019) 134826]

- PbPb collisions:
 - Electromagnetic ultra-peripheral collisions (UPC)
 - HE ions generate huge EM fields $(10^{14} T)$ from coherent action of Z=82 p
 - Huge photon fluxes:
 - $\sigma(\gamma \gamma) \sim 5 \times 10^7$ for PbPb, lager than p, e^{\pm}
 - Beam-energy dependence:
 - Photon luminosities increase as $\propto \log^3(\sqrt{s})$
 - LbyL x-sections:

System	$\sqrt{s_{\rm NN}}$ (TeV)	$\mathcal{L}_{AB} \cdot \Delta t$ (per year)	$\sigma_{\gamma\gamma \to \gamma\gamma}^{\text{excl}} [m_{\gamma\gamma} > 5 \text{ GeV}]$	$N_{\gamma\gamma}^{\text{excl}}$ (per year) [after cuts]
p-p	14	$1 {\rm fb}^{-1}$	$105\pm10~{\rm fb}$	12
p-Pb	8.8	200 nb ⁻¹	$260 \pm 26 \text{ pb}$	6
Pb-Pb	5.5	1 nb ⁻¹	370 ± 70 nb	70

• Large visible LbyL x-sections in PbPb UPCs at the LHC

Light-by-Light Scattering

[Phys.Lett.B 797 (2019) 134826]

- Dataset:
 - 390 μb⁻¹
 - $\sqrt{s} = 5.02 TeV$
- Signature:
 - $\gamma\gamma \to a \to \gamma\gamma$
- Selection of $a \rightarrow \gamma \gamma$:
 - $E_T^{\gamma} > 2GeV$
 - $|\eta| \le 2.4$
 - $m_{\gamma\gamma} > 5 GeV$ (reduce e^+e^-)
 - $P_T^{\gamma\gamma} \leq 1 GeV$ (ensure exclusive production)
- Background:
 - QED e^+e^- production
 - CEP γγ

Light-by-Light Scattering

[Phys.Lett.B 797 (2019) 134826]

- Cross section upper limits:
 - CLs prescription with profile likelihood ratio at 95% CL
 - Cross section limits interpreted as limits on the ALP couplings:
 - ALP only coupling to photons: $g_{a\gamma,aF\tilde{F}}$
 - ALP coupling also to Z: $g_{a\gamma,aB\tilde{B}}$

٠

Low Mass Dilepton Resonance

CMS-HIG-19-007

137 fb⁻¹ (13 TeV)

- Dataset:
 - Full-run2 dataset: 2016 2018 (136 fb⁻¹)
 - $\sqrt{s} = 13 \, TeV$
- Signature:
 - $Z \to \ell^+ \ell^-$
 - $a \rightarrow \ell^+ \ell^-$
- Search for Higgs Exotic decay
 - $H \rightarrow aa \rightarrow 4l$
 - $H \rightarrow Za \rightarrow 4l$
- Main background:
 - SM ZZ
 - Z + X
- Exclude narrow mass window around Y

2e2u channe

20

10

30

40 50 60 (m_{z1}+m_{Z2})/2 [GeV] 10 20 30

10 20

30

(m₂₁+m₂₂)/2 [GeV]

GeV)

Events / (4

(m₂₁+m₂₂)/2 [GeV]

- Model independent cross section upper limits:
 - CLs prescription with profile likelihood ratio at 95% CL
- Cross section limits interpreted as limits on the ALP couplings:
 - Assume $Br(a \rightarrow ll) = 100\%$
 - ALP coupling to Higgs and Z: C_{ZH}^{eff}/Λ^2
 - ALP only coupling to Higgs: C_{aH}^{eff}/Λ^2

Summary

- ALPs are pseudo Nambu-Goldstone bosons associated to Spontaneous Symmetry Breaking
- ALPs couple to different sectors of the SM
 - Higgs, Z/W, photon, lepton
- Different signatures probing various couplings covered in this talk:
 - Photons, Vector gauge bosons, Higgs...
- Further model independent search can also interpret ALPs model:
 - $h \rightarrow aa \rightarrow 2\mu 2b$
 - $h \rightarrow aa \rightarrow 4b$
 - $h \rightarrow aa \rightarrow 4\gamma$
 - $h \rightarrow aa \rightarrow 4\mu \dots$
- Bright future ahead with new prospects coming from different experiments

