

Department of Astronomy

Multi-wavelength Studies on TeV Gamma-ray Binaries

陈尚明 华中科技大学

chensm@mails.ccnu.edu.cn

2021.10.26@TeVPA 2021 · 成都

X-ray binaries V.S. γ-ray binaries

X-ray binaries V.S. γ-ray binaries

Figure: Dubus 2013, Astron Astrophys Rev

Basic properties of TeV gamma-ray binaries

- a compact star + a massive star:
- a) Compact star: NS or BH
- b) Massive star: O or Be star
- multi-wavelength emissions:
- a) from radio to γ -rays (above TeV)
- b) LC: orbital variations
- c) SED: peak above 1 MeV

All detected HMGBs:

PSR? + O star:
>LS 5039
>1FGL J1018.6-5856
>LMC P3
>4FGL J1405.1-6119
>HESS J1832-093

•PSR + Be star:

▶ PSR B1259-63/LS 2883

➢ PSR J2032+4127/MT91 213

≻HESS J0632+057 ?

➢LS I+61°303 ? ! by Weng+2021 via FAST

Figure: Mirabel 2006

Q1: Why only 2 HMGBs with radio pulsations being detected ?

• The radio beam is not pointing to us

$$f(\chi) = (1 - \cos \chi) + \left(\frac{\pi}{2} - \chi\right) \sin \chi,$$

 $\chi \simeq 0.01265 \nu_{
m GHz}^{-0.13} P^{-0.35} \dot{P}_{-15}^{0.035}$ rad

• Severe absorption and scattering by intense stellar outflows

$$DM = \int_{l_{\mathrm{s,obs}}}^{\infty} n_{\mathrm{e}} \mathrm{d}l,$$

$$au(
u) = \int_{l_{
m s,obs}}^{\infty} lpha(
u) {
m d} l.$$

Chen et al. 2021a

Q2: Compared to 200+HMXBs, why only <10 HMGBs being detected so far ?

stellar outflows, photon field

Figure: Wiki_Massive stars

Q2: Compared to 200+HMXBs, why only <10 HMGBs being detected so far ?

• Pulsar wind shock radius vs. Gravitational capture radius

Q2: Compared to 200+HMXBs, why only <10 HMGBs being detected so far ?

➤Pulsar: Initial magnetic field and spin period;

Star: Stellar mass and mass-loss rate;

>Orbit: orbital period and eccentricity.

Q3: Where & how the VHE γ -ray being produced ?

Pulsar magnetosphere (curvature radiation)
 Pulsar wind (anisotropic IC scattering)
 Termination shock (SYN & IC)

Figure: Dubus 2007

Chen et al. 2021b ¹⁰

Outer-gap PWZ

Shock Total

	表 1.2.1: 伽马射线双星系统的轨道参数						
Parameters	PSR B1259-63	PSR J2032+4127	HESS J0632+057	LS I +61°303	LS 5039	1FGL J1018.6-5856	LMC P3
$P_{\rm orb}({\rm days})$	1236.72432(2)	16000 - 17670	315(5)	26.496(3)	3.90603(8)	16.58(2)	10.301
e	0.8698872(9)	0.95-0.99	0.83(8)	0.54(3)	0.35(3)	0.31±0.16	$0.40{\pm}0.07$
a(AU)	7.17	~18.12	2.375	0.415	0.14	0.41	-
$d_{\rm L}({ m kpc})$	2.3(4)	1.33 ± 0.06	1.6(2)	2.0(2)	2.9(8)	5.4	~ 50
$i(^{\circ})$	19–31	~ 60	47-80	10-60	13-64	26–50	~ 50
$\omega(^{\circ})$	138.6659(1)	~ 40	129(17)	41(6)	212(5)	89±30	-
$d_{\rm peri}({\rm AU})$	0.94	-	0.40	0.19	0.09	(0.41)	-
$d_{\rm apas}({\rm AU})$	13.4	-	4.35	0.64	0.19	(0.41)	-
$\phi_{ m peri}$	0	-	0.967	0.23	0	0	0.13
$\phi_{ m supc}$	0.995	-	0.063	0.036	0.080	0.5	0.98
$\phi_{ m infc}$	0.048	-	0.961	0.267	0.769	0	0.24
star	O9.5Ve	B0V	B0Vpe	B0Ve	O6.5V((f))	O6V((f))	OIII
disc	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×
$M_{\star}(M_{\odot})$	31	15 ± 2.8	16	12	23	31	~ 33.5
$R_{\star}(R_{\odot})$	9.2	10	8	10	9.3	10.1	~ 14.5
$T_{\star}(\mathbf{K})$	33500	~ 30000	~ 30000	22500	39000	38900	36351

PSR B1259-63/LS 2883

• Pulsar:

 $P = 47.76 \,\mathrm{ms}, \ \dot{P} \simeq 2.28 \times 10^{-15} \,\mathrm{s \cdot s^{-1}}, \ L_{\mathrm{sd}} \simeq 8 \times 10^{35} \,\mathrm{erg/s}$

• Star:

O9.5Ve, $M_{\star} \sim 30 M_{\odot}$, $R_{\star} \sim 9.5 R_{\odot}$, $T_{\text{eff}} \simeq 33500 \text{ K}$ • Orbit:

 $e \simeq 0.87, ~a \sim 5 \,\mathrm{AU}, ~P_{\mathrm{orb}} \simeq 3.4 \,\mathrm{yr}, ~d_{\mathrm{L}} \sim 2.6 \,\mathrm{kpc}$

Figure: NASA/Goddard Space Flight Center

The companion star possesses an equatorial disc that is inclined to the orbital plane !

Chen et al. 2019, 2021

T-T0 [day]

PSR J2032+4127/MT91 213

• Pulsar:

 $P = 143 \,\mathrm{ms}, \ L_{\mathrm{sd}} \simeq 1.7 \times 10^{35} \,\mathrm{erg/s}, \ \tau \sim 115.8 \,\mathrm{kyr}$

• Be star:

B0Ve $M_{\star} \simeq 25~M_{\odot},~T_{\rm eff} \simeq 30000\,{\rm K}$

• Orbit:

 $d_{\rm L}\!\sim\!1.33\,{\rm kpc}$

 $e \simeq 0.93 - 0.99$

 $P_{\rm orb}\,{\sim}\,45-50$ yr !!!

Ho et al. 2017

The recent periastron passage occurred in 2017 November, and next periastron phase would be around 2067.

(c)VERITAS high & low states (d)MAGIC high & low states VERITAS & MAGIC Collaboration 2018

Parameters	Model 1	Model 2	Model 3
e	0.936	0.961	0.989
$P_{\rm o}({ m d})$	16000	17000	17670
$T_0(\mathrm{MJD})$	58053	58069	58068
$\omega_{ m p}(^{\circ})$	52	40	21
$a\sin i$ (lt-s)	7138	9022	16335

Chen et al. 2021, submitted 17

HESS J0632+057

• Compact object: NS or BH ?

- Massive star: MWC 148: B0Vpe
- Binary orbit:

 $e \sim 0.64 - 0.83$

 $P_{\rm o} \sim 308 - 321 ~{\rm d}$

 $d_{
m L} \sim 1.1 - 1.7 ~
m kpc$

Parameters	Model 1†	Model 2‡	Model 3§
e	0.83 ± 0.08	0.643 ± 0.29	0.35
$P_{\rm o}({\rm d})$	321 ± 5	313^{+11}_{-8}	316.8
$\Phi_{\rm p}$	0.967 ± 0.008	0.663	0.35
$\omega_{\mathrm{p}}(^{\circ})$	129 ± 17	271 ± 29	129

 \dagger Casares et al. 2012;

‡ Moritani et al. 2018;

§ This work. The values adopted here are slightly different from that of Malyshev et al. 2019 (i.e., $e \sim 0.5$, $\Phi_{\rm p} \sim 0.4$).

Chen et al. 2021, submitted 19

Sierpowska-Bartosik & Torres 2009

Chen et al. 2021, submitted 20

Q4: Can HMGBs produce PeV γ-rays?

LHAASO 2021a, Science

Science

RESEARCH ARTICLES

Cite as: The LHAASO Collaboration, Science 10.1126/science.abg5137 (2021).

PeV gamma-ray emission from the Crab Nebula

The LHAASO Collaboration*†

Cao et al. 2021, Nature

LHAASO Source	Possible Origin	Туре	Distance (kpc)	Age $(kyr)^a$	$L_s (\text{erg/s})^b$	Potential TeV Counterpart ^c
LHAASO J0534+2202	PSR J0534+2200	PSR	2.0	1.26	$4.5 imes 10^{38}$	Crab, Crab Nebula
LHAASO J1825-1326	PSR J1826-1334	PSR	3.1 ± 0.2^d	21.4	$2.8 imes 10^{36}$	HESS J1825-137, HESS J1826-130,
	PSR J1826-1256	PSR	1.6	14.4	$3.6 imes 10^{36}$	2HWC J1825-134
LHAASO J1839-0545	PSR J1837-0604	PSR	4.8	33.8	$2.0 imes 10^{36}$	2HWC J1837-065, HESS J1837-069,
	PSR J1838-0537	PSR	1.3^{e}	4.9	$6.0 imes 10^{36}$	HESS J1841-055
LHAASO J1843-0338	SNR G28.6-0.1	SNR	9.6 ± 0.3^{f}	$< 2^{f}$		HESS J1843-033, HESS J1844-030,
						2HWC J1844-032
LHAASO J1849-0003	PSR J1849-0001	PSR	7^g	43.1	9.8×10^{36}	HESS J1849-000, 2HWC J1849+001
	W43	YMC	5.5^h	—	_	
LHAASO J1908+0621	SNR G40.5-0.5	SNR	3.4^{i}	$\sim 10 - 20^j$		MGRO J1908+06, HESS J1908+063,
	PSR 1907+0602	PSR	2.4	19.5	$2.8 imes 10^{36}$	ARGO J1907+0627, VER J1907+062,
	PSR 1907+0631	PSR	3.4	11.3	$5.3 imes 10^{35}$	2HWC 1908+063
LHAASO J1929+1745	PSR J1928+1746	PSR	4.6	82.6	$1.6 imes 10^{36}$	2HWC J1928+177, 2HWC J1930+188,
	PSR J1930+1852	PSR	6.2	2.9	$1.2 imes 10^{37}$	HESS J1930+188, VER J1930+188
	SNR G54.1+0.3	SNR	$6.3^{+0.8}_{-0.7}$ d	$1.8 - 3.3^k$	_	
LHAASO J1956+2845	PSR J1958+2846	PSR	2.0	21.7	3.4×10^{35}	2HWC J1955+285
	SNR G66.0-0.0	SNR	2.3 ± 0.2^d	_		
LHAASO J2018+3651	PSR J2021+3651	PSR	$1.8^{+1.7 l}_{-1.4}$	17.2	3.4×10^{36}	MGRO J2019+37, VER J2019+368,
	Sh 2-104	H II/YMC	$3.3 \pm 0.3^m / 4.0 \pm 0.5^n$			VER J2016+371
LHAASO J2032+4102	Cygnus OB2	YMC	1.40 ± 0.08^o	—		TeV J2032+4130, ARGO J2031+4157,
	PSR 2032+4127	PSR	1.40 ± 0.08^o	201	$1.5 imes 10^{35}$	MGRO J2031+41, 2HWC J2031+415,
	SNR G79.8+1.2	SNR candidate	_			VER J2032+414
LHAASO J2108+5157			—	—	_	—
LHAASO J2226+6057	SNR G106.3+2.7	SNR	0.8^{p}	$\sim 10^p$		VER J2227+608, Boomerang Nebula
	PSR J2229+6114	PSR	0.8^p	$\sim 10^p$	$2.2 imes 10^{37}$	24

Radiation mechanism for PeV γ -rays ?

(1) Leptonic processes: electrons

≻With the magnetic field:

- Curvature radiation
- Synchrotron radiation

 $e^{\pm} + B \!
ightarrow \gamma$

≻With the photon field:

• IC scattering

Figure: Bucciantini+2005; Dubus+2007₂₅

Radiation mechanism for PeV γ -rays ?

(2) Hadronic processes: protons

With photon field: proton IC, Bethe-Heitler or Photomeson processes

$$p+\gamma
ightarrow egin{cases} p+\gamma'\ p+e^++e^-\ p/n+n_0\pi^0+n_+\pi^++n_-\pi \end{cases}$$

With stellar outflows: proton-proton interaction

$$p+p \rightarrow \begin{cases} \pi^0 \rightarrow \gamma + \gamma \\ \pi^+ \rightarrow \mu^+ + \nu_\mu, \ \mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_\mu \\ \pi^- \rightarrow \mu^- + \overline{\nu}_\mu, \ \mu^- \rightarrow e^- + \overline{\nu}_e + \nu_\mu \end{cases}$$

- HMGBs are kind of like enhanced versions of PWN with much more complicated environments !
- LHAASO are likely to detect the PeV photons from binaries in the future (or already have, e.g., LHAASO J2032+4107 ?)

Figure: techexplorist27

Figure: <u>NASA</u> / <u>CXC</u> / <u>SAO</u> / <u>Seward</u>, <u>Tucker</u>, <u>Fesen</u>

• VHE γ-rays:

Production: Leptonic or Hadronic
 Annihilation: Pair Creation

• Particle acceleration:

➤Magnetic reconnection

➢Fermi 1th acceleration

- Pulsar wind physics:
- ≽σ-problem
- ►B-field structure

• Evolution of binary system:

➢Pulsar spin-down

►O/B star and its outflows²⁸

Backup slides

Terminal shock

$$\begin{split} & \frac{L_{\rm sd}}{4\pi r_{\rm s}^2 c} = \rho_{\rm w}(R_{\rm s}) \left| \boldsymbol{v}_{\rm w}(R_{\rm s}) - \boldsymbol{v}_{\rm p} \right|^2 \\ & l_{\rm s} = d \sin \theta_{\rm s} \csc \left(\theta_{\rm s} + \theta_{\rm p} \right) \\ & \theta_{\rm s} \cot \theta_{\rm s} = 1 + \eta \left(\theta_{\rm p} \cot \theta_{\rm p} - 1 \right) \end{split}$$

$$B = \sqrt{rac{L_{
m sd}\sigma}{r_{
m s}^2c(1+\sigma)}}igg(1+rac{1}{u^2}igg)$$
 $L_{
m star} = 4\pi R_{
m star}^2\cdot\sigma_{
m SB}T_{
m star}^4$ $u_B = rac{B^2}{8\pi}, \quad u_{
m star} = rac{L_{
m star}}{4\pi R_{
m s}^2c}$

$$egin{split} P^{ ext{syn}}_{
u}(\gamma) &= rac{\sqrt{3}\,q_e^3B}{m_ec^2}rac{
u}{
u_0}\!\int_{
u/
u_0}^{\infty}\!K_{5/3}(k)dk, \ P^{ ext{IC}}_{
u}(\gamma) &= 3\sigma_T\!\int_{
u_{ ext{s,min}}}^{\infty}rac{
u f_{
u_s}}{4\gamma^2
u_s^2}h(\xi,b_ heta)d
u_s. \ j(
u) &= \int_{\gamma}\!n(\gamma)P_
u}(\gamma)d\gamma. \ F(
u) &= rac{1}{d_{ ext{L}}^2}\!\int_{ heta_{ ext{sh}}}^{\pi}\!\sin heta\,\mathrm{d} heta\!\int_{0}^{2\pi}\!\mathrm{d}arphi\!\int_{l_{ ext{sh}}}^{l_{ ext{sh}}+\Delta_{ ext{sh}}}\!r^2\mathrm{d}rD^2j(
u/D)\!\exp(- au) \end{split}$$

Chen et al. 2021b

Energy distribution

Chen et al. 2021b

Pair production

$$\gamma + \gamma \,{ o}\, e^{\pm}$$

 $d au_{\gamma\gamma} = (1-\mu) n_\epsilon \sigma_{\gamma\gamma} d\epsilon d\,\Omega dl$ $1 - \mu = 1 + \cos\psi\cos\theta + \sin\psi\cos\phi\sin\theta,$ $n_{\epsilon} = rac{2}{h^3 c^3} rac{1}{\exp(\epsilon/kT) - 1} ~\mathrm{ph}~\mathrm{cm}^{-3}\mathrm{erg}^{-1}\mathrm{sr}^{-1}.$ $\sigma_{\gamma\gamma} = rac{\pi r_e^2}{2} (1 - \beta^2) \left[2\beta(\beta^2 - 2) + (3 - \beta^4) \ln\left(rac{1 + \beta}{1 - \beta}
ight)
ight]$ \downarrow $\tau_{\gamma\gamma} = \int_{0}^{\infty} dl \int_{0}^{1} d\cos\theta \int_{0}^{2\pi} d\phi \int_{-\infty}^{\infty} d\epsilon \frac{d\tau_{\gamma\gamma}}{d\epsilon d\,\Omega \,dl}.$

Figure: Dubus 2006