

Belle II: Status and Prospects

Yifan Jin yifan.jin@ts.infn.it

On behalf of Belle II

TeVPA 2021 25-29 October 2021

1964–2000: understand non-invariance of weak quarkinteractions under particle-antiparticle exchange and inversion of spatial coordinates (CP violation). 2001: large CP violation observed in transitions of b-quark from e^+e^- colliders at the Y(4S) mass energy (B factories) \rightarrow success of standard model (SM) theory. 2001–: Use quark dynamics to probe indirectly beyond standard model (BSM) dynamics.

History recap

KEKB + Belle, PEP-II + BaBar, dedicated to searches for CP violation in B mesons, experimentally confirmed Kobayashi Maskawa mechanism.

First successful move on matterantimatter asymmetry (not all accounted for). 2

SuperKEKB accelerator

Nano-beam Scheme:

Adopting beam squeezing and current increase as means to achieve higher luminosity, the project aims to a peak luminosity of $6 \ge 10^{35}$ cm⁻²s⁻¹, 30 times more than KEKB. On 22 June 2020, SuperKEKB set a new world record for peak luminosity: $3.1 \ge 10^{34}$ cm⁻²s⁻¹.

Belle II detector

Compared with Belle:

- Vertexing (decay time) resolution;
- Better momentum resolution;
- Slightly higher acceptance;
- More sophisticated trigger.

Compared with hadron colliders:

- low-background production of huge amounts of B/D/tau particles;
- kinematic constrains from e^+e^- production offer unique precision in final states with multiple neutrinos or π^0 .

D^0/D^+ lifetime

Motivation:

- Test of non-perturbative QCD
- Measured for the first time with sub-percent precision by FOCUS – 20 years ago
- No measurement from Belle/BaBar/LHCb
- D⁺ lifetime is used as reference (LHCb)

Analysis strategy: 2D fit of decay time and its uncertainty. All parameters extracted directly from the data.

Still very important at Belle II: ϕ_1 (current precision ~0.7°) is fundamental inputs of the CKM fit. We expect to improve by a factor of 5.

- Another fundamental input for the CKM fit, proceeding only through $B^- \rightarrow D^0 K^-$ tree level transitions;
- On this field, LHCb will have the upper hand, but Belle II will contribute in modes with neutrals in the final state;
- Good K- π separation is important to suppress the favored B \rightarrow D π decays.

Model independent measurement (Dalitz plot analysis) of ϕ_3 by $B^+ \rightarrow D(K_S^0 h^+ h^-) h^+$ using Belle + Belle II data.

$$A_{B^+}\left(m_{-}^2, m_{+}^2
ight) \propto A_{ar{D}}\left(m_{-}^2, m_{+}^2
ight) + r_B^{DK} e^{i\left(\delta_B^{DK} - \phi_3
ight)} A_D\left(m_{-}^2, m_{+}^2
ight)$$

CKM elements $|V_{cb}|$ and $|V_{ub}|$

 $V = \begin{pmatrix} u & n & e^{\overline{\nu}} \\ p & K & \pi^{\overline{\nu}} \\ c & D & \pi^{\overline{\nu}} \\ t & B^{0} & \overline{B}^{0} \\ \hline B^{0} & B_{s} & \overline{B}_{s} \\ \hline B^{0} & B_{s} & \overline{B}_{s} \\ \hline B^{0} & B_{s} \\ \hline B^{0} &$

Tree level nature of semi-leptonic *B* decays \rightarrow SM gauges \rightarrow key roles for $|V_{cb}|$ and $|V_{ub}|$.

Inclusive and exclusive determinations offer independent and complementary results \rightarrow persistent tension between two approaches. $\cdot |V_{cb}|$ from $B \rightarrow X_c l\nu$, $B \rightarrow D^{(*)} l\nu$ $(l = e, \mu)$

•
$$|V_{ub}|$$
 from $B \to X_u l\nu, B \to \pi(\rho, \eta) l\nu$ $(l = e, \mu)$

Inclusive:

Observed $b \rightarrow u \ell v_{\ell}$ excess in data (> 3σ).

Exclusive:

$$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) \\ = [1.58 \pm 0.43 \pm 0.07] \times 10^{-4}$$

Full Event Interpretation algorithm exploited, tagging B using over 100 hadronic decay modes.

$$\mathcal{B}(\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_l) = \left(4.51 \pm 0.41_{\text{stat}} \pm 0.27_{\text{syst}} \pm 0.45_{\pi_s}\right) \%$$

$$\ell = e, \mu$$

BELLE2-CONF-PH-2020-023

 $\alpha (\phi_2)$

Unique Belle II capability to study all the $B \rightarrow \pi \pi, \rho \rho$ partner decays to determine α . $B^0 \rightarrow \pi^0 \pi^0$: very challenging because four γ 's. Train BDT to suppress background photons. Unique Belle II reach. $\mathscr{B}(B^0 \to \pi^0 \pi^0) = [0.98^{+0.48}_{-0.39}(\text{stat}) \pm 0.27(\text{syst})] \times 10^{-6}$ arXiv:2107.02373

 $B^+ \rightarrow \rho^+ \rho^0$: π -only final state, large background because of ρ mass width. Additional challenge of angular analysis \rightarrow 6D fit including helicity angles. $f_L(B^+ \to \rho^+ \rho^0) = 0.936^{+0.049}_{-0.041}$ (stat) ± 0.021 (syst) $\mathscr{B}(B^+ \to \rho^+ \rho^0) = [20.6 \pm 3.2(\text{stat}) \pm 4.0(\text{syst})] \times 10^{-6}$ BELLE2-TALK-CONF-2021-013

20% precision improvement wrt Belle at the same lumi! Wrt BaBar's best (scaled): better on BF, same on f_L .

$B^+ \rightarrow K^+ \nu \overline{\nu}$

Flavor changing neutral-current. The SM prediction of its Br is $(4.6 \pm 0.5) \times 10^{-6}$. Unobserved, but BSM could potentially enhance its Br.

Complementary probe to BSM from $b \rightarrow s l l$

Previous analyses: tagged approach with limited signal efficiency:

- semileptonic tag (0.2% @ Belle, BaBar)
- hadronic tag (0.04% @ BaBar)

Belle II approach: **novel inclusive tagging** technique - signal efficiency 4.3%

> > Accepted by PRL, arXiv:2104.12624

Two methods for measuring m_{τ} :

 $\bar{\nu}_{\ell}$

- Measurement in the production thresholds (DELCO, BES, KEDR, **BES III**).
- Pseudo-mass (M_{min}) distribution (ARGUS, OPAL, Babar, Belle).

τ lifetime

Important SM parameter. Its precision has implications in LFU, α_s (m_{τ}), etc.

Previous measurements:

- Z-peak: LEP (DELPHI, L3, ALEPH, OPAL).
- Y-peak: CLEO, BaBar, Belle 1.

Strategy at Belle II:

- 1. Reconstruct vertex for 3-prong τ . Only one 3-prong = higher statistics.
- 2. Estimate the τ momentum $\overrightarrow{p}_{\tau}$. Hadronic decays in both sides.
- 3. Find the production vertex. Intersection of $\overrightarrow{p}_{\tau}$ with the plane IP_y.

Lepton flavor violation in τ

Super rare processes. With huger statistic (50 ab⁻¹), one more step approaching them.

Dark sector

Search for an axion like particle (ALP) Signal: $e^+e^- \rightarrow \gamma_{recoil} + a (\rightarrow \gamma \gamma)$

PRL 125, 161806 (2020)

No evidence for ALP $g_{a\gamma\gamma} \lesssim 10^{-3} (\text{GeV}/c^2)^{-1}$ for $0.2 < m_a \le 1 \text{ GeV}/c^2$ Most restrictive to date for $0.2 < m_a < 1 \text{ GeV}/c^2$. Search for an Invisibly Decaying Z' Signal: $e^+e^- \rightarrow \mu^+\mu^-(e^+\mu^-)$ + missing E

PRL 124, 141801 (2020)

No evidence for Z' $g_{Z'\ell\ell} < 5 \times 10^{-2} \dots 1$ for $m_{Z'} \le 6 \text{ GeV}/c^2$

More details at Rajesh Maiti's talk, Dark sector physics at Belle II.

Summary

- A new-generation B-factory has set sail to produce billions of B, D, and tau decays over the next decade. A collaboration of 1100 members from 126 institutions over 26 countries built and operates Belle II, a dedicated state-of-the-art instrument to explore them.
- A rich program is ahead and early harvesting offers already impactful results: D lifetimes, $B^+ \rightarrow K^+ \nu \overline{\nu}$, ALP, Z', etc.
- Belle II will soon offer unique precision probes for BSM physics.

Thank you for your attention!

Back up

Data-taking so far

ACCELERATORS | NEWS

SuperKEKB raises the bar

22 August 2021

Record breaker The SuperKEKB accelerator at the KEK laboratory in Tsukuba, Japan. Credit: S. Takahashi / KEK

On 22 June, the SuperKEKB accelerator at the KEK laboratory in Tsukuba, Japan set a new world record for peak luminosity, reaching 3.1×10^{34} cm⁻² s⁻¹ in the Belle II detector. Until last year, the luminosity record stood at 2.1×10^{34} cm⁻² s⁻¹, shared by the former KEKB accelerator and the LHC. In the summer of 2020, however, SuperKEKB/Belle II surpassed this value with a peak luminosity of 2.4×10^{34} cm⁻² s⁻¹.

https://cerncourier.com/a/superkekb-raises-the-bar/

A new world record!

Performance overview

Greatly improved time resolution compared to previous *B*-factories.

Flavor tagging efficiency comparable to Belle.

Belle II luminosity prospect

SM predictions for $R_{D^{(\ast)}}$

	R(D)	R(Di [*])
D.Bigi, P.Gambino, Phys.Rev. D94 (2016) no.9, 094008 [arXiv:1606.08030 [hep-ph]]	0.299 ± 0.003	
F.Bernlochner, Z.Ligeti, M.Papucci, D.Robinson, Phys.Rev. D95 (2017) no.11, 115008 [arXiv:1703.05330 [hep-ph]]	0.299 ± 0.003	0.257 ± 0.003
D.Bigi, P.Gambino, S.Schacht, JHEP 1711 (2017) 061 [arXiv:1707.09509 [hep-ph]]		0.260 ± 0.008
S.Jaiswal, S.Nandi, S.K.Patra, JHEP 1712 (2017) 060 [arXiv:1707.09977 [hep-ph]]	0.299 ± 0.004	0.257 ± 0.005
Arithmetic average	0.299 ± 0.003	0.258 ± 0.005

$$egin{aligned} \mathbf{CKM} \ & \left[egin{aligned} 1-rac{1}{2}\lambda^2 & \lambda & A\lambda^3(
ho-i\eta) \ -\lambda & 1-rac{1}{2}\lambda^2 & A\lambda^2 \ A\lambda^3(1-
ho-i\eta) & -A\lambda^2 & 1 \end{aligned}
ight] \end{aligned}$$