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Jets at the Higgs Signal
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~ 97% with Jets

Higgstrahlung(ZH) BR Pizza

Up to 97% of Higgstrahlung(ZH) final-states are associated to jets.

Jets are also critical for many EW precision measurements.
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# of jets Probability
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Higgs

Higgstrahlung(ZH) BR Pizza   1/3 of ZH events
Major SM Higgs decay mode.
One color singlet could be 
identified. (Z or Higgs boson)

  2/3 of ZH events
ZH→  is dominant.
Wrong jet pairing is a major 
uncertainty.

qq̄qq̄

2/3 of ZH events need dedicated color-singlet identification (Z, W, H, 

𝜸*) → Via jet clustering and pairing.

Jet clustering is also essential for differential & EW precision measurements 
(e.g. TGCs). 

Jets at the Higgs Signal

Z νν̄  qq̄ ℓℓ
 ττ, μμ

 W W, ZZ
 Zγ*, γγ*

 qq̄

(Potential huge impact)
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  1/3 of ZH events
Major SM Higgs decay mode.
One color singlet could be identified. 
(Z or Higgs boson)
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ZH→  is dominant.
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2/3 of ZH events need dedicated color-singlet identification (Z, W, H, 

𝜸*) → Via jet clustering and pairing.

Jet clustering is also essential for differential & EW precision measurements 
(e.g. TGCs). 

Physical Benchmarks

(Potential huge impact)
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Physical Benchmarks

(Potential huge impact)

BM1:�Massive�bosons�
invariant�mass�resolutions
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  1/3 of ZH events
Major SM Higgs decay mode.
One color singlet could be identified. 
(Z or Higgs boson)

2/3 of ZH events need dedicated color-singlet identification (Z, W, H, 

𝜸*) → Via jet clustering and pairing.

Jet clustering is also essential for differential & EW precision measurements 
(e.g. TGCs). 

Physical Benchmarks

(Potential huge impact)

BM2:��Jet�energy�and�angular�
differential�response

BM1:�Massive�bosons�
invariant�mass�resolutions
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  1/3 of ZH events
Major SM Higgs decay mode.
One color singlet could be identified. 
(Z or Higgs boson)

2/3 of ZH events need dedicated color-singlet identification (Z, W, H, 

𝜸*) → Via jet clustering and pairing.

Jet clustering is also essential for differential & EW precision measurements 
(e.g. TGCs). 

Physical Benchmarks

(Potential huge impact)

BM2:��Jet�energy�and�angular�
differential�response

BM1:�Massive�bosons�
invariant�mass�resolutions

BM3:�#�of�jet�identification�&�
thrust�based�algorithm
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  2/3 of ZH events
ZH→  is dominant.
Wrong jet pairing is a major uncertainty.

qq̄qq̄
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# of jets Probability
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2/3 of ZH events need dedicated color-singlet identification (Z, W, H, 

𝜸*) → Via jet clustering and pairing.

Jet clustering is also essential for differential & EW precision measurements 
(e.g. TGCs). 

Physical Benchmarks

(Potential huge impact)

BM1:�Massive�bosons�
invariant�mass�resolutions

  1/3 of ZH events
Major SM Higgs decay mode.
One color singlet could be identified. 
(Z or Higgs boson)
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BM1: Massive Boson Mass Resolution
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W-, Z-, and Higgs-boson dijet masses are well separated at CEPC.

Z- and W-boson could be separated ≈ 2σ.

Higgs Boson Mass Resolution = 3.8% is reached the CEPC baseline. 

W Z H
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# of jets Probability
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  1/3 of ZH events
Major SM Higgs decay mode.
One color singlet could be identified. 
(Z or Higgs boson)

2/3 of ZH events need dedicated color-singlet identification (Z, W, H, 

𝜸*) → Via jet clustering and pairing.

Jet clustering is also essential for differential & EW precision measurements 
(e.g. TGCs). 

Physical Benchmarks

(Potential huge impact)

BM2:��Jet�energy�and�angular�
differential�response

  2/3 of ZH events
ZH→  is dominant.
Wrong jet pairing is a major uncertainty.

qq̄qq̄
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Matching RecoJet & GenJet
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Two matching methods are studied:
I. Matching energetic RecoJet to minimum ∆R GenJet.

II. Minimum combination ∆R ( ) of RecoJet and GenJet. (Adopted)= Δθ2 + Δϕ2

Poor Matching Good Matching

Matching Efficiency ≡
NΔR<0.4

N
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Matching RecoJet & GenJet
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Two matching methods are studied:
I. Matching energetic RecoJet to minimum ∆R GenJet.

II. Minimum combination ∆R ( ) of RecoJet and GenJet. (Adopted)= Δθ2 + Δϕ2

2-jet 4-jet

Matching Efficiency ≡
NΔR<0.4

N
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Quantify the Performance
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Double-sided crystal ball (DBCB) function is used to extract energy 
resolution/scale; Gaussian is used to extracted angular ( ) resolution/scale.θ, ϕ

Energy Relative Difference :  
ERecoJet − EGenJet

EGenJet
Angular Difference :  ϕRecoJet − ϕGenJet
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Jet Energy Scale         (JES)
Jet Energy Resolution (JER)

Jet Angular Scale         (JAS)
Jet Angular Resolution (JAR)
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BM3: JER & JES (Reco-Gen)
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JER is around 4.5% in barrel region; JES is around 1%.
The difference between 2 and 4 jets final-state is controlled within 1% level.
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BM3: JES Calibration
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Multi-differential JES calibration (cos𝜃, energy, flavor tagging).

Preliminary W-boson mass uncertainty already at very small level.
Further control the systematic using differential information?
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BM3: JAR (Reco-Gen) 
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JAR is around 1% in barrel region; JAS is independent of 𝜙.

The difference between 2 and 4 jets final-state is controlled within 1% level.
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BM3: JAS (Reco-Gen) 
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JAS(𝜃) is controlled to be near 0.02% and JAS(𝜙) is around 0.04%.
RMS of JAS(𝜃) and JAS(𝜙) is around 10-5.
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Compare to CMS & ATLAS at LHC
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JER at CEPC is better than CMS as it should be; 3-4 times better in the 
same pT region.

JAR(𝜙) at CEPC is better than ATLAS as it should be; 1.0-1.6 times 

better in the same pT region.

Free from: QCD Background, Underlying Event, Pile Up. Benefit from: PFA (Arbor), Fine-segments of Calorimeter

JER JAR(𝜙)
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  2/3 of ZH events
ZH→  is dominant.
Wrong jet pairing is a major uncertainty.

qq̄qq̄
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# of jets Probability

0 2.44%

2 29.73%

4 59.58%

6 8.23%

  1/3 of ZH events
Major SM Higgs decay mode.
One color singlet could be identified. 
(Z or Higgs boson)

2/3 of ZH events need dedicated color-singlet identification (Z, W, H, 

𝜸*) → Via jet clustering and pairing.

Jet clustering is also essential for differential & EW precision measurements 
(e.g. TGCs). 

Physical Benchmarks

(Potential huge impact)BM3:�#�of�jet�identification�&�
thrust�based�algorithm
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BM2: Thrust Jet Clustering Method

Pi or Pj : Momentum of each particle

Thrust is one kind of event-shape variable.
The nature of the clustering idea for the single boson to 2-jet events.

1. Boosting the system back to the rest frame.
2. Find out a vector in the   and   phase space with highest momentum 

flux.
3. Divide the system into 2 hemispheres with the thrust axis, and each 

identified as a jet. (Only applicable to 2 jets event)

θ ϕ

( sinθ × cosφ, sinθ × sinφ, cosθ )nT:  A unit vector 

 20

T ≡ max
∑N

j |Pj ⋅ nT |

∑N
i |Pi |

Separate the particles into two jets

nT: Thrust axis

Trial axis

Particles



ECAL MiniWS, July 23, 2020Pei-Zhu Lai (NCU, Taiwan)

BM3: JER (ee-kt—Thrust)
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ee-kt, uds quarks

The improvement brought from thrust based algorithm is significant at high 

energy region (Ej > 60 GeV) and central detector region (|cos𝜃j| < 0.6).

Improvement comes from boosted object separation in thrust based algorithm.

ee-kt Thrust
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BM3: JAR (ee-kt—Thrust)
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Summary(1/2)

 23

Jets are crucial for the CEPC Higgs physics and EW physics
97% of ZH events involve jets
1/3 of ZH events come from only single Z or Higgs boson.

2/3 of ZH events have more than one boson (e.g. ZH→ )  
→ Need color singlet identification algorithm.

qq̄qq̄
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# of jets Probability
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~ 97% with Jets

Higgstrahlung(ZH) BR Pizza
Higgs

Z
 ττ, μμ,

 WW, ZZ
 Zγ*, γγ*

 qq̄

 qq̄qq̄
 ℓℓqq̄
 ℓℓℓℓ

1/3

2/3



ECAL MiniWS, July 23, 2020Pei-Zhu Lai (NCU, Taiwan)

I. BMR < 4% (3.8%)  is critical. Achieved at the CEPC baseline
W, Z, Higgs boson can be efficiently separated at both semi-leptonic & full 
hadronic final-state.
Exploit Z-boson di-jet recoil mass to distinguish the ZH from ZZ process 
(main background).  

II. Jet energy resolution ~ 3-5% & Jet angular resolution ~ 1%. 
All of the dominant jet processes have been studies.

III.2-jet final-states could be identified with efficiency×purity = 
88.4%.

Have designed a dedicatedly algorithm, thrust based algorithm.
JER is improved ~10% in |cos𝜃j| < 0.6; JAR is degraded ~10%.

 24

Summary(2/2)



Thank for your attention
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Back up

 26
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CERN-PH-EP-2015-194
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The separation of Z- and W-boson at CEPC is better than ATLAS as it 

should be.  
→ Better collision environment and dedicatedly designed PFA and detector.

BM1: Massive Boson Mass Resolution

W Z
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Higgs Production at CEPC
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Numerical values of these cross sections at
p

s = 240 GeV are listed in Table 11.2.
Because of the interference effects between e+e� ! ZH and e+e� ! ⌫e⌫̄eH for the
Z ! ⌫e⌫̄e decay and between e+e�! ZH and e+e�! e+e�H for the Z ! e+e� decay,
the cross sections of these processes cannot be separated. The breakdowns in Figure 11.2
and Table 11.2 are for illustration only. The e+e� ! ZH cross section shown is from
Figure 11.1(a) only whereas the e+e� ! ⌫e⌫̄eH and e+e� ! e+e�H cross sections
include contributions from their interferences with the e+e�! ZH process.

Figure 11.2: Production cross sections of e
+
e
�

! ZH and e
+
e
�

! (e+
e
�

/⌫⌫̄)H as functions of
p

s for a 125 GeV SM Higgs boson. The vertical dashed line indicates
p

s = 240 GeV, the nominal
energy of the CEPC running as a Higgs factory.

The CEPC as a Higgs factory is designed to deliver a combined integrated luminosity
of 5.6 ab�1 to two detectors in 7 years. Over 10

6 Higgs boson events will be produced
during this period. The large statistics, well-defined event kinematics and clean collision
environment will enable the CEPC to measure the Higgs boson production cross sections
as well as its properties (mass, decay width and branching ratios, etc.) with precision
far beyond those achievable at the LHC. In contrast to hadron collisions, e+e� collisions
are unaffected by underlying events and pile-up effects. Theoretical calculations are less
dependent on higher order QCD radiative corrections. Therefore, more precise tests of
theoretical predictions can be performed at the CEPC. The tagging of e+e�! ZH events
using the recoil mass method (see Section 11.1.2), independent of the Higgs boson decay,
is unique to lepton colliders. It provides a powerful tool to perform model-independent
measurements of the inclusive e+e� ! ZH production cross section, �(ZH), and of
the Higgs boson decay branching ratios. Combinations of these measurements will allow
for the determination of the total Higgs boson decay width and the extraction of the Higgs
boson couplings to fermions and vector bosons.These measurements will provide sensitive
probes to potential new physics beyond the SM.

118 EXPERIMENTAL CONDITIONS, PHYSICS REQUIREMENTS AND DETECTOR CONCEPTS
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Figure 3.1: Cross sections of the leading Standard Model processes for unpolarized electron-positron
collisions and the numbers of events expected in a dataset corresponding to an integrated luminosity of
5.6 ab�1 as functions of the center-of-mass energy. The W and Z fusion processes refer to e

+
e
�

!

⌫⌫̄H and e
+
e
�

! e
+
e
�

H production, respectively. The e
+
e
�

! qq̄ curve includes contributions
from u, d, s, c, and b quarks, and the e

+
e
�

! tt̄ production is shown separately. These cross sections
are obtained from the Whizard program [7].

ZHZ pole

Threshold  
Scan

316 PHYSICS PERFORMANCE WITH BENCHMARK PROCESSES

11.1 HIGGS BOSON PHYSICS

The Higgs boson is responsible for the electroweak symmetry breaking. It is the only fun-
damental scalar particle observed so far. The discovery of such a particle at the LHC was a
major theoretical and experimental breakthrough. However, the SM is likely only an effec-
tive theory at the electroweak scale. To explore potential new physics at the electroweak
scale and beyond, complementary approaches of direct searches at the energy frontier as
well as precision measurements will be needed. The current LHC and the planned HL-
LHC have the potential to significantly extend its new physics reach and to measure many
of the Higgs boson couplings with precision of a few percent in a model-dependent way.

In contrast to the LHC, Higgs boson candidates can be identified through a technique
known as the recoil mass method without looking at the Higgs boson decays themselves
at the CEPC. Therefore, Higgs boson production can be disentangled from its decay in a
model independent way. Moreover, the cleaner environment at a lepton collider allows a
much better exclusive measurement of Higgs boson decay channels. All of these give the
CEPC an impressive reach in probing Higgs boson properties. In this section, the results
of the current CEPC simulation studies on the precision of the Higgs boson property
measurements are summarized. In addition, the potential sensitivity to the CP properties
of the Higgs boson is also discussed. More details can be found in Ref. [10].

11.1.1 HIGGS BOSON PRODUCTION AND DECAY

Production processes for a 125 GeV SM Higgs boson at the CEPC are e+e�! ZH (ZH
or Higgsstrahlung), e+e� ! ⌫e⌫̄eH (⌫⌫̄H or W fusion) and e+e� ! e+e�H (eeH or Z
fusion) as illustrated in Figure 11.1. In the following, the W and Z fusion processes are
collectively referred to as the vector-boson fusion (VBF) production.

e
�

e
+

Z
⇤

Z

H

(a)

e
�

⌫̄ee
+

W
⇤

W
⇤

⌫e

H

(b)

e
�

e
+e

+

Z
⇤

Z
⇤

e
�

H

(c)

Figure 11.1: Feynman diagrams of the Higgs boson production processes at the CEPC: (a) e
+
e
�

!

ZH , (b) e
+
e
�

! ⌫e⌫̄eH and (c) e
+
e
�

! e
+
e
�

H .

The SM Higgs boson production cross sections as functions of the center-of-mass
energy are shown in Figure 11.2, assuming a Higgs boson mass of 125 GeV. Similarly,
the Higgs boson decay branching ratios and natural width are shown in Table 11.1. As an
s-channel process, the cross section of the e+e� ! ZH process reaches its maximum at
p

s ⇠ 250 GeV, and then decreases asymptotically as 1/s. The VBF production process
proceeds through t-channel exchange of vector bosons and its cross section increases
logarithmically as ln

2
(s/M2

V
). Because of the small neutral-current Zee coupling, the

VBF cross section is dominated by W fusion.

Process Cross section(fb) Events in 5.6 ab-1

e+e-→ZH 196.2 1.10 × 106

e+e-→𝛎e𝛎 ̅eH 6.19 3.47 × 104

e+e-→e+e-H 0.28 1.57 × 103

Total 203.7 1.14 × 106

Observables: Higgs mass, σ(ZH), event rate (σ(ZH, vvH) x Br(H→X)), Diff.

→ Absolute Higgs width, branching ratio, couplings

S : B =  
1 : (100 ~ 1000)

CEPC CDR
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Objects Definition
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MCPs represents initial parton of MC quark. The original state of quark.

GenJets are all MC particles grouped with c𝛕 > 1cm except neutrinos 

through exclusive ee-kt jet clustering algorithm.

RecoJets are grouped with the particle flow objects by exclusive ee-kt 

jet clustering algorithm.

Jet is clustered by exclusive ee-kt algorithm.

e+

e-

q, g

𝝅, k

PFO  
(Arbor)

MCP Gen Jet Reco Jet

Detecto
r Resolution

Jet C
lustering Algorith

m

Tiny contrib
ution

Major co
ntrib

ution
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  2/3 of ZH events
ZH→  is dominant.
Wrong jet pairing is a major uncertainty.

qq̄qq̄

 30

# of jets Probability

0 2.44%

2 29.73%

4 59.58%

6 8.23%

  1/3 of ZH events
Major SM Higgs decay mode.
One color singlet could be identified. 
(Z or Higgs boson)

2/3 of ZH events need dedicated color-singlet identification (Z, W, H, 

𝜸*) → Via jet clustering and pairing.

Jet clustering is also essential for differential & EW precision measurements 
(e.g. TGCs). 

(Potential huge impact)
BM4:�Separation�of�WW,�ZZ,�
and�ZH�→�qqqq�final�state

Physical Benchmarks
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The Efficiency x Purity of ZH identification is reached 18% in the 5 ab-1 statistic.

The statistical uncertainty of ZH to full hadronic final-state could achieve 

0.25% after considering the major bkg, WW and ZZ.

GenJet RecoJet

Sample \ Assignment(%) WW ZZ ZH

WW 64.98 19.07 15.94

ZZ 26.51 50.54 22.96

ZH 20.29 22.93 56.77

RecoJet

Sample \ Assignment(%) WW ZZ ZH

WW 63.24 18.95 17.81

ZZ 16.09 57.89 26.02

ZH 9.99 13.84 76.17

GenJet

BM4: WW, ZZ, ZH to 4-jet Separation
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Higgs Production @ Hadron Collider

 32

Gluon-gluon Fusion Vector boson fusion Associated vector boson 
fusion

Associated top-quark pair 
production

ggF VBF WH/ZH ttH
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Numerical values of these cross sections at
p

s = 240 GeV are listed in Table 11.2.
Because of the interference effects between e+e� ! ZH and e+e� ! ⌫e⌫̄eH for the
Z ! ⌫e⌫̄e decay and between e+e�! ZH and e+e�! e+e�H for the Z ! e+e� decay,
the cross sections of these processes cannot be separated. The breakdowns in Figure 11.2
and Table 11.2 are for illustration only. The e+e� ! ZH cross section shown is from
Figure 11.1(a) only whereas the e+e� ! ⌫e⌫̄eH and e+e� ! e+e�H cross sections
include contributions from their interferences with the e+e�! ZH process.

Figure 11.2: Production cross sections of e
+
e
�

! ZH and e
+
e
�

! (e+
e
�

/⌫⌫̄)H as functions of
p

s for a 125 GeV SM Higgs boson. The vertical dashed line indicates
p

s = 240 GeV, the nominal
energy of the CEPC running as a Higgs factory.

The CEPC as a Higgs factory is designed to deliver a combined integrated luminosity
of 5.6 ab�1 to two detectors in 7 years. Over 10

6 Higgs boson events will be produced
during this period. The large statistics, well-defined event kinematics and clean collision
environment will enable the CEPC to measure the Higgs boson production cross sections
as well as its properties (mass, decay width and branching ratios, etc.) with precision
far beyond those achievable at the LHC. In contrast to hadron collisions, e+e� collisions
are unaffected by underlying events and pile-up effects. Theoretical calculations are less
dependent on higher order QCD radiative corrections. Therefore, more precise tests of
theoretical predictions can be performed at the CEPC. The tagging of e+e�! ZH events
using the recoil mass method (see Section 11.1.2), independent of the Higgs boson decay,
is unique to lepton colliders. It provides a powerful tool to perform model-independent
measurements of the inclusive e+e� ! ZH production cross section, �(ZH), and of
the Higgs boson decay branching ratios. Combinations of these measurements will allow
for the determination of the total Higgs boson decay width and the extraction of the Higgs
boson couplings to fermions and vector bosons.These measurements will provide sensitive
probes to potential new physics beyond the SM.

Higgs Production @ Lepton Collider

 33

Z Fusion W fusion Associated vector boson 
fusion

e+
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SM Production @ Lepton Collider
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Process Cross section Events in 5.6 ab
�1

Higgs boson production, cross section in fb
e
+
e

�
! ZH 196.2 1.10 ⇥ 106

e
+
e

�
! ⌫e⌫̄eH 6.19 3.47 ⇥ 104

e
+
e

�
! ZH 0.28 1.57 ⇥ 103

Total 203.7 1.14 ⇥ 106

Background production, cross section in pb
e
+
e

�
! e

+
e
+(�) (Bhabha) 930 5.2 ⇥ 109

e
+
e

�
! qq̄(�) 54.1 3.0 ⇥ 108

e
+
e

�
! µ

+
µ

�(�) [or ⌧
+
⌧

�(�)] 5.3 3.0 ⇥ 107

e
+
e

�
! WW 16.7 9.4 ⇥ 107

e
+
e

�
! ZZ 1.1 6.2 ⇥ 106

e
+
e

�
! e

+
e

�
ZZ 4.54 2.5 ⇥ 107

e
+
e

�
! e

+
⌫W

�
/e

�
⌫̄W

+ 5.09 2.6 ⇥ 107

Table 1.2: Cross section of Higgs boson production and other SM background
processes at

p
s = 240 GeV and numbers of events in 5.6 ab

�1. Note that
there are considering the interferences between the same final state from dif-
ferent processes after the W and Z boson decays. Except Bhabha scattering
process, the residual cross sections are calculated using the Whizard genera-
tor [13]. BABAYAGA event generator [14] is used to calculate the cross section
of Bhabha scattering cross section under requiring fiducial |cos✓| < 0.99, photon

energy greater than 0.1 GeV and |cos✓e±�| < 0.99.

Decay mode Branching ratio Relative uncertainty (%)
H ! bb̄ 57.7% (+3.2, -3.3)
H ! cc̄ 2.91% (+12, -12)
H ! gg 8.57% (+10, -10)
H ! ⌧

+
⌧

� 6.32% (+5.7, -5.7)
H ! µ

+
µ

� 2.19 ⇥10�4 (+6.0, -5.9)
H ! WW

⇤ 21.5% (+4.3, -4.2)
H ! ZZ

⇤ 2.64% (+4.3, -4.2)
H ! �� 2.28 ⇥10�3 (+5.0, -4.9)
H ! Z� 1.53 ⇥10�3 (+9.0, -8.8)
�H 4.07 MeV (+4.0, -4.0)

Table 1.3: SM predictions of the decay branching ratios and natural width for a
125 GeV Higgs boson from Refs. [15–17]. The relevant uncertainties include the

theoretical and parametric sources.

9

 : 10%
 : 20%
 : 70%

Z → ℓ+ℓ−

Z → νν
Z → qq̄

 : 30%
 : 70%
W → ℓν
W → qq̄
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Process Cross section Events in 5.6 ab
�1

Higgs boson production, cross section in fb
e
+
e

�
! ZH 196.2 1.10 ⇥ 106

e
+
e

�
! ⌫e⌫̄eH 6.19 3.47 ⇥ 104

e
+
e

�
! ZH 0.28 1.57 ⇥ 103

Total 203.7 1.14 ⇥ 106

Background production, cross section in pb
e
+
e

�
! e

+
e
+(�) (Bhabha) 930 5.2 ⇥ 109

e
+
e

�
! qq̄(�) 54.1 3.0 ⇥ 108

e
+
e

�
! µ

+
µ

�(�) [or ⌧
+
⌧

�(�)] 5.3 3.0 ⇥ 107

e
+
e

�
! WW 16.7 9.4 ⇥ 107

e
+
e

�
! ZZ 1.1 6.2 ⇥ 106

e
+
e

�
! e

+
e

�
ZZ 4.54 2.5 ⇥ 107

e
+
e

�
! e

+
⌫W

�
/e

�
⌫̄W

+ 5.09 2.6 ⇥ 107

Table 1.2: Cross section of Higgs boson production and other SM background
processes at

p
s = 240 GeV and numbers of events in 5.6 ab

�1. Note that
there are considering the interferences between the same final state from dif-
ferent processes after the W and Z boson decays. Except Bhabha scattering
process, the residual cross sections are calculated using the Whizard genera-
tor [13]. BABAYAGA event generator [14] is used to calculate the cross section
of Bhabha scattering cross section under requiring fiducial |cos✓| < 0.99, photon

energy greater than 0.1 GeV and |cos✓e±�| < 0.99.

Decay mode Branching ratio Relative uncertainty (%)
H ! bb̄ 57.7% (+3.2, -3.3)
H ! cc̄ 2.91% (+12, -12)
H ! gg 8.57% (+10, -10)
H ! ⌧

+
⌧

� 6.32% (+5.7, -5.7)
H ! µ

+
µ

� 2.19 ⇥10�4 (+6.0, -5.9)
H ! WW

⇤ 21.5% (+4.3, -4.2)
H ! ZZ

⇤ 2.64% (+4.3, -4.2)
H ! �� 2.28 ⇥10�3 (+5.0, -4.9)
H ! Z� 1.53 ⇥10�3 (+9.0, -8.8)
�H 4.07 MeV (+4.0, -4.0)

Table 1.3: SM predictions of the decay branching ratios and natural width for a
125 GeV Higgs boson from Refs. [15–17]. The relevant uncertainties include the

theoretical and parametric sources.

9
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Physics Object Performances
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Leptons: Above 2 GeV, the reconstruction efficiency > 99.5% with 
misidentification rate < 1%; A relative mass resolution 0.19% of 
 .

Photons:  Above 5 GeV, the reconstruction efficiency ~ 100% with no 
misidentification rate from hadronic jet; A relative mass resolution 2.5% of 
 

 -leptons: The reconstruction efficiency ~80% with a purity ~90% 

measured from   event at  .

Jet flavor tagging: The b-tagging efficiency/purity of 80%/90% and c-

tagging efficiency/purity 60%/60% are extracted from   at Z-pole.

 :   separation   with proposed ToF, achieving the accumulated 
efficiency/purity of 95%/95% for kaons ID in   from momentum 
2~20 GeV.

H → μ+μ−

H → γγ

τ
ZH → ττqq̄ s = 240 GeV

Z → qq̄

K± K/π 2σ
Z → qq̄
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BM3: JER (Reco-Gen)
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JER depends on the jet flavors since the semi-leptonic decay of heavy flavor jet.  
→ Consistent JER when excluding neutrinos in GenJets
For light-flavor jets with higher energy (Ej~90), JER could reach 3.4%.
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The results show very nice agreement between cos𝜃 > 0 and cos𝜃 < 0

BM3: JES Symmetry (Reco-Gen)

 38
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Double-sided Crystal Ball Function
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7 Determinate the jet energy scale and jet energy resolution237

7.1 Methodolog238

In order to fully understand the behaviors of hadronization e↵ect, jet clustering, and detector response,239

three di↵erent levels of objects are defined for this study: According to the energy, two jets would be240

classified into leading jet and sub-leading jet. The relative di↵erence of leading jet or sub-leading jet241

between (MCP-Gen), (Reco-Gen), and (Reco-MCP)242

RG�M =
EGenJet � EMCP

EMCP

RR�G =
ERecoJet � EGenJet

EGenJet

RR�M =
ERecoJet � EMCP

EMCP

(6)

are modelled with the double-sided crystal ball (DSCB) function:243

f (x|↵1,↵2, n1, n2, x̄,�) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

 
n1

|↵1|

!n1

e�
|↵1 |2

2

 
n1

|↵1|
� |↵1| �

x � x̄
�

!�n1 x � x̄
�
< �↵1

e�
1
2 ( x�x̄
� )2

� ↵1 <
x � x̄
�
< ↵2

 
n2

|↵2|

!n2

e�
|↵2 |2

2

 
n2

|↵2|
� |↵2| �

x + x̄
�

!�n2

↵2 <
x � x̄
�

(7)

The core of DSCB function is the Gaussian function, in which the mean of Gaussian function (x̄) presents244

the relative shift of the jet energy scale and the width (�) gives the e↵ect of ”smearing” which is treated245

as the jet energy resolution. The lower exponential tail and the higher tail of the DSCB distributions246

present the imperfect e↵ect on jet clustering and constituent (PFA) reconstruction. In di↵erent levels, the247

sources of peak shift and ”smear” can be di↵erent:248

• For RG�M, the e↵ect mainly comes from the uncertainties of hadronization and fragmentation and249

also the imperfection of grouping all MC particles (exclude neutrinos) to form the GenJet, jet250

clustering algorithm performance.251

• For RR�G, the detector response gives the major impact on the jet energy scale and the jet energy252

resolution are mainly driven by the detector resolution.253

• For RR�M, the integrating performance of JER and JES would combine the previous e↵ects.254

To study the JER and JES dependence of angle and energy, JER and JES were studied as a function255

of the angle or energy. Meanwhile, every angular and energy range is insured the statistical uncertainty256

below criteria. For the JER and JES dependence of angle and energy, both of them the statistic uncer-257

tainties are required to below 0.28%. The divided range of ✓, ⌘, �, ERecoJet, EGenJet, and EMCP would258

be di↵erent because the di↵erent distribution. The distribution of RecoJet ✓ and ERecoJet after requiring259

statistical uncertainty criteria are shown as an example in Figure 6.260

8 Results261

8.1 Overview JER and JES262

The leading jet and sub-leading jet are calculated the �R and �E (The di↵erence energy) between each263

stage and then plot the 2-D histograms are shown Figure 7. The intrinsic resolution can be seen in the264

10
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Minimum Matching Method

 40

Only 1.28% of events have dR < 0.4 between Lead RecoJet to more than 2 
GenJets; 1.79% for Sub-leading one; 0.7% for Third one.
When #(∆RReco-Gen<0.4) > 2, matched GenJet is decided by |∆E/E|. 
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BM1: Massive Boson Mass Resolution

 41

Before Cleaned After Cleaned

Cleaned: Select the light flavor jet event with low energy ISR, low energy neutrino inside jet, and within |cos𝜃| < 0.85.

W-, Z-, and Higgs-boson dijet masses are well separated at CEPC.

After cleaned, Z- and W-boson could be separated ≈ 2σ.

Higgs Boson Mass Resolution = 3.8% is reached the CEPC baseline. 

W Z H W Z H
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BM3: JER, JAR(𝜃), and JAR(𝜙) Cover Fraction 
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Operation mode Process JER(%) JAR(𝜃) (%) JAR(𝜙) (%)

Z e+e- → Z → qq̅ 57.6 52.5 44.7

H

e+e- → Z𝜸 → qq̅𝜸 56.2 51.0 47.9

e+e- → WW → 𝞵𝛎qq̅ 49.1 46.7 46.9

e+e- → WW → qq̅qq̅ 58.2 50.9 49.9
e+e- → ZZ → 𝛎𝛎̅qq̅ 56.4 48.3 40.6

e+e- → ZZ → qq̅qq̅ 61.4 47.9 48.3

e+e- → ZH → 𝛎𝛎̅(qq̅ or gg) 62.5 44.1 48.5

e+e- → ZH → qq̅(qq̅ or gg) 63.3 43.5 44.8

~60% ~50% ~50%

=
Nσ covered

N
Cover Fraction: 

The cover fraction is close to a 
Gaussian distribution, 68%.  
→ Well-controlled tail

Pei-Zhu Lai (NCU, Taiwan)
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BM3: JER, JAR(𝜃), and JAR(𝜙) Cover Fraction 
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Operation mode Process JER(%) JAR(𝜃)(%) JAR(𝜙)(%)
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e+e- → WW → qq̅qq̅ 58.2 50.9 49.9
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e+e- → ZH → 𝛎𝛎̅(qq̅ or gg) 62.5 44.1 48.5

e+e- → ZH → qq̅(qq̅ or gg) 63.3 43.5 44.8

Gen
) / EGen - E

Reco
(E

0.6− 0.4− 0.2− 0 0.2 0.4 0.6

En
tri

es
 / 

0.
00

3

0

10000

20000

30000

40000

50000

CEPCPreliminary (240 GeV)

Left: 0.103
Center: 0.564
Right: 0.333

MC
Gaussian
DBCB

ZZ_sl

)Genθ - Recoθ(
0.02− 0.01− 0 0.01 0.02

En
tri

es
 / 

0.
00

3
0

50

100

150

200

250

310× CEPCPreliminary (240 GeV)

Left: 0.207
Center: 0.483
Right: 0.310

MC

Gaussian

ZZ_sl

)
Gen

φ - 
Reco

φ(
0.02− 0.01− 0 0.01 0.02

En
tri

es
 / 

0.
00

3

0

50

100

150

200

310× CEPCPreliminary (240 GeV)

Left: 0.245
Center: 0.406
Right: 0.349

MC

Gaussian

ZZ_sl



ECAL MiniWS, July 23, 2020Pei-Zhu Lai (NCU, Taiwan)

JAS Projection

 44
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BM2: Preliminary Number of Jet Identification

 45

  (2 jets)e+e− → qq̄
  (4 jets)ZZ → qq̄qq̄

  (6 jets)ZH → qq̄H → qq̄qq̄qq̄

Samples:

  (4 jets)ZH → qq̄qq̄

Signal Efficiency × purity

2 jets 88.4%

6 jets 1.8%

20 event-shape variables are combined with the  
multi-variate analysis to separate 2, 4, and 6 jets final-states.

2-jets4 and 6-jets

  (4 jets)W+W− → qq̄qq̄
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Event Shape Variables

 46

Heavy Jet Mass

B1 =
1

2∑N
j=1 |Pj |

N

∑
i=1

|Pi × nT | , (Pi × nT) > 0

M2
1 =

1

( s)2
(

N

∑
i

Pi)2

M2
2 =

1

( s)2
(

N

∑
i

Pi)2

Jet Broadening

B2 =
1

2∑N
j=1 |Pj |

N

∑
i=1

|Pi × nT | , (Pi × nT) < 0

Lab =
1

∑N
j=1 |Pj |

N

∑
i=1

Pa
i Pb

i

|Pi |

C = 3(λ1λ2 + λ1λ3 + λ2λ3)

D = 27λ1λ2λ3

C and D Parameter

EEC =
1

σtot ∑
ij

∫ dσ
EiEj

Q2
δ(cosχ − cosθij)

likelihood =
∑ (P1i) × P2i

∑ (P1i × P2i) × ∑ (P2i × P2i)

Energy-Energy Correlation

Jet Transition variable, y23, y45, y67

dij = 2min(E2
i , E2

j )(1 − cosθij)

ee-kt jet clustering algorithm
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BM2: Number of Jet Identification

 47

Event-shape variables basic multi-variable analysis to separate 2, 4, and 6 

jets final-state.

20 Variables

# of charge lepton EEC 6

# of 𝜸 EEC 4

# of charge hadron EEC 2

# of neutro hadron C parameter

E𝜸̅ D parameter

EC̅harge hadron Heavy Mass

EN̅eutro hadron Max Broaden

E𝜸 Total Broaden

ECharge hadron Thrust

ENeutro hadron y23, y45, y67 
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BM3: Thrust Jet Clustering Method

 48

Identify the 2 jets event with (efficiency x purity) = 88.4%  
→ The thrust jet clustering method
After “cleaned" selection, the thrust method has suppressed the tail significantly  
→ Expected to have improvement on jet energy and angular response.

ee-kt Thrust

Cleaned: Select the light flavor jet event with low energy ISR, low energy neutrino inside jet, and within |cos𝜃| < 0.85.
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Matching Impact

 49
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Both after being applied the cleaned selection
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BM3: JER (ee-kt—Thrust)
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Thrust

ZH and Z-pole processes are improved ~10% in |cos𝜃| <0.5, while ZZ and 

WW are degraded by thrust based algorithm. (Need more investigation)
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16/02/19 CEPC WS@Oxford 13

BM6: full hadronic WW-ZZ separation

WW
● Low energy jets! (20 – 120 GeV)

● Typical multiplicity ~ o(100)

● WW-ZZ Separation: determined by

– Intrinsic boson mass/width

– Jet confusion from color single reconstruction – jet clustering & pairing 

– Detector response
Yongfeng ZHU

BM4: WW & ZZ to 4-jet Separation

 51
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Typical multiplicity → Up to 102

Jets are clustered by ee-kt and paired by 𝝌2.

Separation of  WW & ZZ to 4 jets is determined by:
1. (14%) Intrinsic boson mass/width (10 GeV)
2. (39%) Wrong jet pairing for color singlet reconstruction  
→ Jet Clustering & Pairing

3. (51%) Detector response

MCP GenJet

25%

12%

W+W-→ qqqq

RecoJet

χ2 = | (m1 − mboson) | + | (m2 − mboson) |

14% 39% 51%

Master Defense, July 15, 2020
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Equal mass requirement: |M12 - M34| < 10 GeV
Cost half of the statistic.
Overlapping region can be reduced from 51%/39% to 
31%/15% for the RecoJet/GenJet.

CEPC baseline could separate WW & ZZ with 
full hadronic final-state
Need to improve the naive jet pairing method.
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According to the final results, the following estimation could be declared: 
The identified efficiency of ZH signal is 60% with background, 20% ZZ and 10% WW. 
The cross section of ZZ is 5 times amount than ZH, 10 times from WW.

WW

ZZ

ZH

Efficiency XS

10%

20%

60%

10

1

5

100

100

60

Purity 
60/200 
= 30%

# of ZH = 500,000 in the 5 ab-1

500,000 x 18% = 150,000 could be identified
1 / sqrt(150,000) = 0.25% 

Efficiency x Purity 

60% x 30% = 18%

ZH Full Hadronic Statistical Uncertainty
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Kinematic Summary Plots(Parton level)
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E as a Function of the Polar Angle
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Leading JER & JES
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JER/JES between Reco jet and MCP would 

combine the effects of two previous stages.
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JER/JES between Reco jet and MCP would 

combine the effects of two previous stages.
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