Differential Jet Performance

Pei-Zhu Lai

NCU (Taiwan)

On the behalf of the CEPC Collaboration

Online mini-workshop, National Central University (NCU), Chung-li Taiwan

July 23, 2020

Jets at the Higgs Signal

Up to 97% of Higgstrahlung(ZH) final-states are associated to jets.
 Jets are also critical for many EW precision measurements.

Jets at the Higgs Signal

■ 2/3 of ZH events need dedicated color-singlet identification (Z, W, H, γ^*) → Via jet clustering and pairing.

# of jets	Probability	 I/3 of ZH events Major SM Higgs decay mode 	
0	2.44%	 One color singlet could be identified. 	
2	29.73%	(Z or Higgs boson)	
4	59.58%	2/3 of ZH events	
6	8.23%	 ZH→qqqqq is dominant. M(rong ist pairing is a major uncortaint). 	
		(Potential huge impact)	

■ 2/3 of ZH events need dedicated color-singlet identification (Z, W, H, γ^*) → Via jet clustering and pairing.

■ 2/3 of ZH events need dedicated color-singlet identification (Z, W, H,

 γ^*) \rightarrow Via jet **clustering** and **pairing**.

2/3 of ZH events need dedicated color-singlet identification (Z, W, H, γ*) → Via jet clustering and pairing.
 Jet clustering is also essential for differential & EW precision measurements

BMZ: Jet energy and angular differential response

(e.g.TGCs).

thrust based algorithm

(Potential huge impact)

■ 2/3 of ZH events need dedicated color-singlet identification (Z, W, H, γ^*) → Via jet clustering and pairing.

Jet clustering is also essential for differential & EW precision measurements (e.g. TGCs).
BM2: Jet energy and angular

```
differential response
```

# of jets	Probability	 I/3 of ZH events Major SM Higgs decay mode
0	2.44%	 One color singlet could be identified.
2	29.73%	(Z or Higgs boson)
4	59.58%	2/3 of ZH events BMI: Massive bosons
6	8.23%	 ZH→qqqqq is dominant.
		 Wrong jet pairing is a major uncertaint (Potential huge impact)

■ 2/3 of ZH events need dedicated color-singlet identification (Z, W, H, γ^*) → Via jet clustering and pairing.

BMI: Massive Boson Mass Resolution

■ W-, Z-, and Higgs-boson dijet masses are **well separated** at CEPC.

 \blacksquare Z- and W-boson could be separated $\approx 2\sigma$.

■ Higgs Boson Mass Resolution = 3.8% is reached the CEPC baseline.

	# of jets	Probability	 I/3 of ZH events Major SM Higgs decay mode. 	
		2.44%	 One color singlet could be identified. 	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	29.73%	(Z or Higgs boson)	
	4	59.58%	2/3 of ZH events	
	6	8.23%	<ul> <li>ZH→qqqqq is dominant.</li> <li>Muse a jet a similar is a maximum containts.</li> </ul>	
			• vvrong jet pairing is a major uncertainty.	

(Potential huge impact)

■ 2/3 of ZH events need dedicated color-singlet identification (Z, W, H,  $\gamma^*$ ) → Via jet clustering and pairing.

```
BMZ: Jet energy and angular
differential response
```

## Matching RecoJet & GenJet



Two matching methods are studied:

- I. Matching energetic RecoJet to minimum  $\Delta R$  GenJet.
- II. Minimum combination  $\Delta R$  ( =  $\sqrt{\Delta \theta^2 + \Delta \phi^2}$ ) of RecoJet and GenJet. (Adopted)

*Matching Efficiency* 
$$\equiv \frac{N_{\Delta R < 0.4}}{N}$$

## Matching RecoJet & GenJet



Two matching methods are studied:

- I. Matching energetic RecoJet to minimum  $\Delta R$  GenJet.
- II. Minimum combination  $\Delta R$  ( =  $\sqrt{\Delta \theta^2 + \Delta \phi^2}$ ) of RecoJet and GenJet. (Adopted)

Matching Efficiency 
$$\equiv \frac{N_{\Delta R < 0.4}}{N}$$

Pei-Zhu Lai (NCU, Taiwan)

ECAL MiniWS, July 23, 2020

## **Quantify the Performance**

Double-sided crystal ball (DBCB) function is used to extract energy resolution/scale; Gaussian is used to extracted angular ( $\theta, \phi$ ) resolution/scale.



ECAL MiniWS, July 23, 2020

## BM3: JER & JES (Reco-Gen)



■ JER is around **4.5%** in barrel region; JES is around **1%**.

The difference between 2 and 4 jets final-state is controlled within 1% level. Pei-Zhu Lai (NCU, Taiwan)

## **BM3: JES Calibration**



• Multi-differential JES calibration ( $\cos\theta$ , energy, flavor tagging).

Preliminary W-boson mass uncertainty already at very small level.

Further control the systematic using differential information?

## BM3: JAR (Reco-Gen)



■ The difference between 2 and 4 jets final-state is controlled within 1% level. Pei-Zhu Lai (NCU, Taiwan) 16 ECAL MiniWS, July 23, 2020

# BM3: JAS (Reco-Gen)



■ JAS( $\theta$ ) is controlled to be near **0.02%** and JAS( $\phi$ ) is around **0.04%**. ■ RMS of JAS( $\theta$ ) and JAS( $\phi$ ) is around **10**-5.

Pei-Zhu Lai (NCU, Taiwan)

ECAL MiniWS, July 23, 2020

## Compare to CMS & ATLAS at LHC



- JER at CEPC is better than CMS as it should be; 3-4 times better in the same pT region.
- **JAR(** $\phi$ **)** at CEPC is better than **ATLAS** as it should be; **I.0-I.6 times** better in the same pT region.

Free from: QCD Background, Underlying Event, Pile Up.
 Benefit from: PFA (Arbor), Fine-segments of Calorimeter
 Pei-Zhu Lai (NCU, Taiwan)
 I8
 ECAL MiniWS, July 23, 2020



■ 2/3 of ZH events need dedicated color-singlet identification (Z, W, H,  $\gamma^*$ ) → Via jet clustering and pairing.

## **BM2: Thrust Jet Clustering Method**



P_i or P_j: Momentum of each particle n_T: A unit vector (  $\sin\theta \times \cos\phi$ ,  $\sin\theta \times \sin\phi$ ,  $\cos\theta$  )



- Thrust is one kind of event-shape variable.
- The nature of the clustering idea for the single boson to 2-jet events.
  - I. Boosting the system back to the rest frame.
  - 2. Find out a vector in the  $\theta$  and  $\phi$  phase space with highest momentum flux.
  - 3. Divide the system into 2 hemispheres with the thrust axis, and each identified as a jet. (Only applicable to **2 jets event**)

## BM3: JER (ee-kt—Thrust)



■ The improvement brought from thrust based algorithm is significant at high energy region ( $E_j > 60 \text{ GeV}$ ) and central detector region ( $|\cos\theta_j| < 0.6$ ).

Improvement comes from boosted object separation in thrust based algorithm.

## BM3: JAR (ee-kt—Thrust)



• Both of jet  $\theta$  and  $\phi$  angular resolution are degraded by thrust method around 10%.



### Jets are crucial for the CEPC Higgs physics and EW physics

- 97% of ZH events involve jets
- I/3 of ZH events come from only single Z or Higgs boson.
- **2/3** of ZH events have more than one boson (e.g.  $ZH \rightarrow q\bar{q}q\bar{q}$ )
  - $\rightarrow$  Need color singlet identification algorithm.





#### I. BMR < 4% (3.8%) is critical. Achieved at the CEPC baseline

- * W, Z, Higgs boson can be efficiently separated at both semi-leptonic & full hadronic final-state.
- * Exploit Z-boson di-jet recoil mass to distinguish the ZH from ZZ process (main background).

### II. Jet energy resolution ~ 3-5% & Jet angular resolution ~ 1%.

* All of the dominant jet processes have been studies.

# III.2-jet final-states could be identified with efficiency×purity = 88.4%.

- * Have designed a dedicatedly algorithm, thrust based algorithm.
- * JER is improved ~10% in  $|\cos\theta_j| < 0.6$ ; JAR is degraded ~10%.

# Thank for your attention



## **BMI: Massive Boson Mass Resolution**



- The separation of Z- and W-boson at CEPC is better than ATLAS as it should be.
  - → Better collision environment and dedicatedly designed PFA and detector.

## **Higgs Production at CEPC**



■ Observables: Higgs mass,  $\sigma(ZH)$ , event rate ( $\sigma(ZH, vvH) \times Br(H \rightarrow X)$ ), Diff.

→ Absolute Higgs width, branching ratio, couplings

## **Objects Definition**

- MCPs represents initial parton of MC quark. The original state of quark.
- **Genjets** are all MC particles grouped with  $c\tau > 1$  cm except neutrinos through <u>exclusive ee-kt</u> jet clustering algorithm.
- Recojets are grouped with the particle flow objects by <u>exclusive ee-kt</u> jet clustering algorithm.





■ 2/3 of ZH events need dedicated color-singlet identification (Z, W, H,  $\gamma^*$ ) → Via jet clustering and pairing.



The Efficiency x Purity of ZH identification is reached 18% in the 5 ab⁻¹ statistic.
 The statistical uncertainty of ZH to full hadronic final-state could achieve 0.25% after considering the major bkg, WW and ZZ.

## **Higgs Production @ Hadron Collider**



## **Higgs Production @ Lepton Collider**



## SM Production @ Lepton Collider

Process	Cross section	Events in 5.6 $ab^{-1}$
	Higgs boson production, cross section in	fb
$e^+e^- \to ZH$	196.2	$1.10 \times 10^{6}$
$e^+e^- \rightarrow \nu_e \bar{\nu_e} H$	6.19	$3.47 \times 10^4$
$e^+e^- \rightarrow ZH$	0.28	$1.57 \times 10^3$
Total	203.7	$1.14 \times 10^{6}$

Background production, cross section in pb				
$e^+e^- \rightarrow e^+e^+(\gamma)$ (Bhabha)	930	$5.2 \times 10^9$		
$e^+e^- \to q\bar{q}(\gamma)$	54.1	$3.0 \times 10^8$		
$e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ [or $\tau^+\tau^-(\gamma)$ ]	5.3	$3.0  imes 10^7$		
$e^+e^- \to WW$	16.7	$9.4  imes 10^7$		
$e^+e^- \rightarrow ZZ$	1.1	$6.2  imes 10^6$		
$e^+e^- \rightarrow e^+e^-ZZ$	4.54	$2.5  imes 10^7$		
$e^+e^- \rightarrow e^+ \nu W^- / e^- \bar{\nu} W^+$	5.09	$2.6 \times 10^7$		

$Z \rightarrow \ell^+ \ell^-$ : 10%	
$Z \rightarrow \nu \nu$ : 20%	$W  ightarrow \ell  u$ : 30%
Z  ightarrow q ar q: 70%	$W  ightarrow qar{q}$ : 70%

## **Higgs Decay Modes**

Decay mode	Branching ratio	Relative uncertainty (%)
$H \to b\bar{b}$	57.7%	(+3.2, -3.3)
$H \to c\bar{c}$	2.91%	(+12, -12)
$H \to gg$	8.57%	(+10, -10)
$\overline{H \to \tau^+ \tau^-}$	6.32%	(+5.7, -5.7)
$H \to \mu^+ \mu^-$	$2.19 \times 10^{-4}$	(+6.0, -5.9)
$\overline{H \to WW^*}$	21.5%	(+4.3, -4.2)
$H \to Z Z^*$	2.64%	(+4.3, -4.2)
$H\to\gamma\gamma$	$2.28 \times 10^{-3}$	(+5.0, -4.9)
$H \to Z \gamma$	$1.53 \times 10^{-3}$	(+9.0, -8.8)
$\Gamma_H$	4.07 MeV	(+4.0, -4.0)



## **Physics Object Performances**

- Leptons: Above 2 GeV, the reconstruction efficiency > 99.5% with misidentification rate < 1%; A relative mass resolution 0.19% of  $H \rightarrow \mu^+ \mu^-$ .
- **Photons**: Above 5 GeV, the reconstruction efficiency ~ 100% with no misidentification rate from hadronic jet; A relative mass resolution 2.5% of  $H \rightarrow \gamma \gamma$
- $\tau$ -leptons: The reconstruction efficiency ~80% with a purity ~90% measured from  $ZH \rightarrow \tau \tau q \bar{q}$  event at  $\sqrt{s} = 240 \ GeV$ .
- Jet flavor tagging: The b-tagging efficiency/purity of 80%/90% and c-tagging efficiency/purity 60%/60% are extracted from  $Z \rightarrow q\bar{q}$  at Z-pole.
- $K^{\pm}$ :  $K/\pi$  separation  $2\sigma$  with proposed ToF, achieving the accumulated efficiency/purity of 95%/95% for kaons ID in  $Z \rightarrow q\bar{q}$  from momentum 2~20 GeV.

# BM3: JER (Reco-Gen)



■ JER depends on the jet flavors since the semi-leptonic decay of heavy flavor jet. → Consistent JER when excluding neutrinos in GenJets

For light-flavor jets with higher energy ( $E_j \sim 90$ ), JER could reach **3.4%**.

## BM3: JES Symmetry (Reco-Gen)



• The results show very nice agreement between  $\cos\theta > 0$  and  $\cos\theta < 0$ 

## **Double-sided Crystal Ball Function**

$$f(x|\alpha_{1},\alpha_{2},n_{1},n_{2},\bar{x},\sigma) = \begin{cases} \left(\frac{n_{1}}{|\alpha_{1}|}\right)^{n_{1}} e^{-\frac{|\alpha_{1}|^{2}}{2}} \left(\frac{n_{1}}{|\alpha_{1}|} - |\alpha_{1}| - \frac{x - \bar{x}}{\sigma}\right)^{-n_{1}} & \frac{x - \bar{x}}{\sigma} < -\alpha_{1} \\ e^{-\frac{1}{2}\left(\frac{x - \bar{x}}{\sigma}\right)^{2}} & -\alpha_{1} < \frac{x - \bar{x}}{\sigma} < \alpha_{2} \\ \left(\frac{n_{2}}{|\alpha_{2}|}\right)^{n_{2}} e^{-\frac{|\alpha_{2}|^{2}}{2}} \left(\frac{n_{2}}{|\alpha_{2}|} - |\alpha_{2}| - \frac{x + \bar{x}}{\sigma}\right)^{-n_{2}} & \alpha_{2} < \frac{x - \bar{x}}{\sigma} \end{cases}$$

## **Minimum Matching Method**

- Only 1.28% of events have dR < 0.4 between Lead RecoJet to more than 2 GenJets; 1.79% for Sub-leading one; 0.7% for Third one.
- When  $#(\Delta R_{\text{Reco-Gen}} < 0.4) > 2$ , matched GenJet is decided by  $|\Delta E/E|$ .



## **BMI: Massive Boson Mass Resolution**



■ W-, Z-, and Higgs-boson dijet masses are **well separated** at CEPC.

• After cleaned, Z- and W-boson could be separated  $\approx 2\sigma$ .

### ■ Higgs Boson Mass Resolution = 3.8% is reached the CEPC baseline.

Cleaned: Select the light flavor jet event with low energy ISR, low energy neutrino inside jet, and within  $|\cos\theta| < 0.85$ .Pei-Zhu Lai (NCU, Taiwan)41ECAL MiniWS, July 23, 2020

## **BM3: JER, JAR(\theta), and JAR(\phi) Cover Fraction**

$e^{+}e^{-} \rightarrow Z \rightarrow q\overline{q}$ $e^{+}e^{-} \rightarrow Z\gamma \rightarrow q\overline{q}\gamma$ $e^{+}e^{-} \rightarrow WW \rightarrow \mu\nu q\overline{q}$ $e^{+}e^{-} \rightarrow WW \rightarrow q\overline{q}q\overline{q}$ $e^{+}e^{-} \rightarrow ZZ \rightarrow \nu\overline{\nu}q\overline{q}$ $e^{+}e^{-} \rightarrow ZZ \rightarrow \mu\overline{q}q\overline{q}$	57.6 56.2 49.1 58.2 56.4	52.5 51.0 46.7 50.9 48.3	44.7 47.9 46.9 49.9
$e^{+}e^{-} \rightarrow Z\gamma \rightarrow q\overline{q}\gamma$ $e^{+}e^{-} \rightarrow WW \rightarrow \mu\nu q\overline{q}$ $e^{+}e^{-} \rightarrow WW \rightarrow q\overline{q}q\overline{q}$ $e^{+}e^{-} \rightarrow ZZ \rightarrow \nu\overline{\nu}q\overline{q}$ $e^{+}e^{-} \rightarrow ZZ \rightarrow q\overline{q}q\overline{q}$	56.2 49.1 58.2 56.4	51.0 46.7 50.9 48.3	47.9 46.9 49.9
$e^{+}e^{-} \rightarrow WW \rightarrow \mu\nu q\overline{q}$ $e^{+}e^{-} \rightarrow WW \rightarrow q\overline{q}q\overline{q}$ $e^{+}e^{-} \rightarrow ZZ \rightarrow \nu\overline{\nu}q\overline{q}$ $e^{+}e^{-} \rightarrow ZZ \rightarrow q\overline{q}q\overline{q}$	49.1 58.2 56.4	46.7 50.9 48.3	46.9 49.9
$e^+e^- \to WW \to q\overline{q}q\overline{q}$ $e^+e^- \to ZZ \to \nu\overline{\nu}q\overline{q}$ $e^+e^- \to ZZ \to q\overline{q}q\overline{q}$	58.2 56.4	50.9 48.3	49.9
e⁺e⁻ → ZZ → ν⊽qqq e⁺e⁻ → ZZ → qqqq	56.4	48.3	40 (
$e^+e^- \rightarrow ZZ \rightarrow q\overline{q}q\overline{q}$			40.6
	61.4	47.9	48.3
$e^+e^- \rightarrow ZH \rightarrow \nu \overline{\nu}(q\overline{q} \text{ or } gg)$	62.5	44.I	48.5
$e^+e^- \rightarrow ZH \rightarrow q\overline{q}(q\overline{q} \text{ or } gg)$	63.3	43.5	44.8
(240 GeV)	~60%	~50%	~50%
MC Gaussian DBCB <b>Cover F</b>	raction:	$=\frac{N_{\sigma  cov}}{N}$	ered
■ The co Gaussia → We	over frac an distril <b>ell-con</b> t	tion is clo bution, <b>68</b> trolled t	ose to a %. <b>ail</b>
	$e^+e^- \rightarrow ZZ \rightarrow q\overline{q}q\overline{q}$ $e^+e^- \rightarrow ZH \rightarrow \nu\overline{\nu}(q\overline{q} \text{ or } gg)$ $e^+e^- \rightarrow ZH \rightarrow q\overline{q}(q\overline{q} \text{ or } gg)$ $(240 \text{ GeV})$ $Gaussian$ $DBCB$ $Gaussian$ $DBCB$ $The co Gaussia \rightarrow We$	e ⁺ e ⁻ → ZZ → q $\overline{q}q\overline{q}$ 61.4 e ⁺ e ⁻ → ZH → $\nu\overline{\nu}(q\overline{q} \text{ or } gg)$ 62.5 e ⁺ e ⁻ → ZH → $q\overline{q}(q\overline{q} \text{ or } gg)$ 63.3 (240 GeV) ~60% MC Gaussian DBCB Cover Fraction: The cover fract Gaussian distrit → Well-cont	$e^+e^- \rightarrow ZZ \rightarrow q\overline{q}q\overline{q} \qquad 61.4 \qquad 47.9$ $e^+e^- \rightarrow ZH \rightarrow \nu\overline{\nu}(q\overline{q} \text{ or } gg) \qquad 62.5 \qquad 44.1$ $e^+e^- \rightarrow ZH \rightarrow q\overline{q}(q\overline{q} \text{ or } gg) \qquad 63.3 \qquad 43.5$ $(240 \text{ GeV}) \qquad \sim 60\% \qquad \sim 50\%$ $Gaussian \qquad -DBCB \qquad Cover Fraction: = \frac{N_{\sigma \ cov}}{N}$ $\blacksquare \text{ The cover fraction is clo} Gaussian \text{ distribution, } 68$ $\rightarrow \text{ Well-controlled to}$

## **BM3: JER, JAR(\theta), and JAR(\phi) Cover Fraction**



## **JAS Projection**



## **BM2: Preliminary Number of Jet Identification**



20 event-shape variables are combined with the multi-variate analysis to separate 2, 4, and 6 jets final-states.

## Event Shape Variables

#### **Heavy Jet Mass**

$$M_1^2 = \frac{1}{(\sqrt{s})^2} (\sum_{i}^{N} P_i)^2$$
$$M_2^2 = \frac{1}{(\sqrt{s})^2} (\sum_{i}^{N} P_i)^2$$

#### **C** and **D** Parameter

$$L^{ab} = \frac{1}{\sum_{j=1}^{N} |P_j|} \sum_{i=1}^{N} \frac{P_i^a P_i^b}{|P_i|}$$
$$C = 3(\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3)$$
$$D = 27\lambda_1 \lambda_2 \lambda_3$$

#### Jet Broadening

$$\begin{split} B_1 &= \frac{1}{2\sum_{j=1}^N |P_j|} \sum_{i=1}^N |P_i \times n_T|, (P_i \times n_T) > 0\\ B_2 &= \frac{1}{2\sum_{j=1}^N |P_j|} \sum_{i=1}^N |P_i \times n_T|, (P_i \times n_T) < 0 \end{split}$$

#### **Energy-Energy Correlation**

$$EEC = \frac{1}{\sigma_{tot}} \sum_{ij} \int d\sigma \frac{E_i E_j}{Q^2} \delta(\cos \chi - \cos \theta_{ij})$$
  
likelihood = 
$$\frac{\sum (P1_i) \times P2_i}{\sqrt{\sum (P1_i \times P2_i) \times \sum (P2_i \times P2_i)}}$$

#### Jet Transition variable, y₂₃, y₄₅, y₆₇ ee-kt jet clustering algorithm

$$d_{ij} = 2min(E_i^2, E_j^2)(1 - \cos\theta_{ij})$$

## **BM2: Number of Jet Identification**

#### **Correlation Matrix (signal)**

	Linear correlation coefficients in %		
	numchgLight	7 -6 8 7 6 5 -1 1211 1 -8 17 10 -6 17 13 8 12 100	100
	numCama	54 49 54 50 45 45 35 58 59 21 22 30 14 33 -9 15 61 37 13 58 00 12	80
les	numChgHad	63-57 64 57 52 53 41 68 70 22 29 4 <b>1 16 33 23 20 69 46 15 00 58</b> 8	00
EEC 6	numNeuHad avGama	27-25 28 26 24 23 21 30 30 10 10 18 35 19 10 10 29 18 00 15 13 32 28 33 30 26 25 22 35 35 -9 13 15 -4 -6 71 14 00 18 46 37 13	60
	avChgHad	52 <mark>47</mark> 53494442 <mark>32</mark> 5959172029 -9 <mark>62 -5 -110014296961</mark> 17	
EEC 4	avNeuHad	11 9-11-10 -9 -8 4-15-13 -4 -2 -4 85 -4 -9100-1 10-2015 -6 -	40
EEC 2	EnGama EnChgHad	22 11 14 12 10 10 7-19 18 -3 -6 -5-11 -8 00 -9 -5 71 10 23 -9-10 22 20 25 23 20 19 8 39 35 -8 -9 14 10 00 -8 -4 62 -6 19 33 33 17	20
C parameter	EnNeuHad MCPy6	-5 4 -5 -4 -4 -4 -1-10 -8 -3 -3 -3 <mark>100</mark> 10-11 85 -9 -4 35 16 14 -8 35 32 35 29 27 32 26 34 38 20 49 00 -3 14 -5 -4 29 15 18 41 30	0
D parameter	MCPy4 MCPy2	35 <mark>33</mark> 36272633263034220049-3-9-6-220131029221	0
Heavy Mass	MCPEEC6	0084929082827598100393438-8351813593530705911	-20
	MCPEEC2	277828477778006875412626 -1 8 7 4 32 22214135 -1	-40
Max Broaden	D parameter	95 98 94 92 941 0078 72 82 53 33 32 -4 19 10 -8 42 25 23 53 45 5	
Total Broaden	HeavyMass 9	9496919600947777482542627-42010-944262452456	-60
	TotalBroaden	0899100969194828492483635-52514115333286454 8	
Thrust	Thrust -	0710095949698777584533332 4 2011 9 47 28 25 5749 -6	-80
V23, V45, V67	C parameter	099798969495828390483535-522121152322763547	-100
- · • · •			9Light

# Event-shape variables basic multi-variable analysis to separate 2, 4, and 6 jets final-state.

Pei-Zhu Lai (NCU, Taiwan)

20 Variables

# of charge lepton

# of  $\gamma$ 

# of charge hadron

# of neutro hadron

Ēγ

ECharge hadron

 $\overline{E}_{Neutro hadron}$ 

Eγ

Echarge hadron

**E**Neutro hadron

## **BM3: Thrust Jet Clustering Method**



- Identify the 2 jets event with (efficiency x purity) = 88.4%
  - $\rightarrow$  The thrust jet clustering method
- After "cleaned" selection, the thrust method has suppressed the tail significantly
  - $\rightarrow$  Expected to have improvement on jet energy and angular response.

Cleaned: Select the light flavor jet event with low energy ISR, low energy neutrino inside jet, and within  $|\cos\theta| < 0.85$ .Pei-Zhu Lai (NCU, Taiwan)48ECAL MiniWS, July 23, 2020

# **Matching Impact**

### Energy Matching

#### $\Delta R$ Matching



#### Both after being applied the cleaned selection

## BM3: JER (ee-kt—Thrust)



**ZH** and Z-pole processes are improved  $\sim 10\%$  in  $|\cos\theta| < 0.5$ , while ZZ and WW are degraded by thrust based algorithm. (**Need more investigation**)

# BM4: WW & ZZ to 4-jet Separation



1aster Defense, July 15, 2020

# BM4: WW & ZZ to 4-jet Separation



#### full hadronic final-state

Need to improve the naive jet pairing method.

120

100

m_{ii} [GeV]

140

160

0.01

60

80

## ZH Full Hadronic Statistical Uncertainty

According to the final results, the following estimation could be declared: The identified efficiency of ZH signal is 60% with background, 20% ZZ and 10% WW. The cross section of ZZ is 5 times amount than ZH, 10 times from WW.



## Kinematic Summary Plots(Parton level)



## E as a Function of the Polar Angle



Pei-Zhu Lai (NCU, Taiwan)

# Leading JER & JES



# Sub-leading JER & JES



ECAL MiniWS, July 23, 2020